测距
激光雷达
光学
遥感
航程(航空)
空间碎片
贝叶斯概率
贝叶斯推理
计算机科学
光子
门控
物理
人工智能
碎片
地质学
气象学
材料科学
电信
复合材料
生理学
生物
作者
Yuan Tian,Xiao Hu,Yixin Zhao,Xuan Zhang,DingJie Wang,Songmao Chen,Wei Hao,Meilin Xie,Xiuqin Su
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2024-10-31
卷期号:49 (22): 6561-6561
摘要
To enhance the accuracy of space debris localization, spaceborne single-photon LiDAR (SSPL) presents a promising technique for accurate target ranging. Extended Kalman filtering (EKF) plays a crucial role in range gating under high dynamic and nonlinear motion conditions of space debris, ensuring accurate state estimation and prior distance data. However, unknown and time-varying statistics of process and measurement noise significantly degrade state estimation accuracy, posing risks of filter divergence and reduced photon reception, ultimately rendering range gating ineffective. To address this challenge, we propose an adaptive range gating method based on variational Bayesian adaptive extended Kalman filtering (ARG-VBAEKF). This method leverages variational Bayesian (VB) posterior approximation to estimate the joint distribution of state and noise. Simulation results demonstrate that ARG-VBAEKF achieves accurate state and noise estimation, thereby effectively enhancing range gating performance in SSPL-based space debris ranging.
科研通智能强力驱动
Strongly Powered by AbleSci AI