Integrated multiomics analysis and machine learning refine molecular subtypes and prognosis for muscle-invasive urothelial cancer

免疫疗法 医学 膀胱癌 肿瘤科 内科学 癌症 机器学习 生物信息学 计算生物学 计算机科学 生物
作者
Guangdi Chu,Xiaoyu Ji,Yonghua Wang,Haitao Niu
出处
期刊:Molecular therapy. Nucleic acids [Cell Press]
卷期号:33: 110-126 被引量:37
标识
DOI:10.1016/j.omtn.2023.06.001
摘要

Muscle-invasive urothelial cancer (MUC), characterized by high aggressiveness and significant heterogeneity, is currently lacking highly precise individualized treatment options. We used a computational pipeline to synthesize multiomics data from MUC patients using 10 clustering algorithms, which were then combined with 10 machine learning algorithms to identify molecular subgroups of high resolution and develop a robust consensus machine learning-driven signature (CMLS). Through multiomics clustering, we identified three cancer subtypes (CSs) that are related to prognosis, with CS2 exhibiting the most favorable prognostic outcome. Subsequent screening enabled identification of 12 hub genes that constitute a CMLS with robust predictive power for prognosis. The low-CMLS group exhibited a more favorable prognosis and greater responsiveness to immunotherapy and was more likely to exhibit the "hot tumor" phenotype. The high-CMLS group had a poor prognosis and lower likelihood of benefitting from immunotherapy, but dasatinib and romidepsin may serve as promising treatments for them. Comprehensive analysis of multiomics data can offer important insights and further refine the molecular classification of MUC. Identification of CMLS represents a valuable tool for early prediction of patient prognosis and for screening potential candidates likely to benefit from immunotherapy, with broad implications for clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
猪猪hero应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
猪猪hero应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
刚刚
猪猪hero应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得50
刚刚
华仔应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
猪猪hero应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
诚心的剑通完成签到,获得积分10
2秒前
郭宇发布了新的文献求助10
6秒前
陈永伟发布了新的文献求助10
7秒前
一天不学浑身难受完成签到 ,获得积分10
10秒前
12秒前
香蕉觅云应助zy采纳,获得10
14秒前
王庆鹏发布了新的文献求助10
15秒前
科研通AI2S应助漂亮幻莲采纳,获得10
19秒前
果子完成签到 ,获得积分10
21秒前
佰斯特威应助fangyifang采纳,获得10
25秒前
啵啵冰应助小费采纳,获得50
27秒前
啵啵冰应助小费采纳,获得50
28秒前
爆米花应助漂亮幻莲采纳,获得10
28秒前
30秒前
mao完成签到,获得积分10
30秒前
100发布了新的文献求助30
31秒前
梦里潇湘发布了新的文献求助10
35秒前
40秒前
40秒前
jopaul完成签到,获得积分10
41秒前
41秒前
天天快乐应助给你一beizi3采纳,获得20
42秒前
Machine发布了新的文献求助10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944