Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study

医学 列线图 乳腺癌 接收机工作特性 队列 腋窝淋巴结 前哨淋巴结 肿瘤科 淋巴结 放射科 新辅助治疗 内科学 癌症
作者
Jionghui Gu,Tong Tong,Dong Xu,Cheng Fang,Chengyu Fang,Chang He,Jing Wang,Baohua Wang,Xin Yang,Kun Wang,Jie Tian,Tianan Jiang
出处
期刊:Cancer [Wiley]
卷期号:129 (3): 356-366 被引量:54
标识
DOI:10.1002/cncr.34540
摘要

Abatract Background Neoadjuvant chemotherapy (NAC) can downstage tumors and axillary lymph nodes in breast cancer (BC) patients. However, tumors and axillary response to NAC are not parallel and vary among patients. This study aims to explore the feasibility of deep learning radiomics nomogram (DLRN) for independently predicting the status of tumors and lymph node metastasis (LNM) after NAC. Methods In total, 484 BC patients who completed NAC from two hospitals (H1: 297 patients in the training cohort and 99 patients in the validation cohort; H2: 88 patients in the test cohort) were retrospectively enrolled. The authors developed two deep learning radiomics (DLR) models for personalized prediction of the tumor pathologic complete response (PCR) to NAC (DLR‐PCR) and the LNM status (DLR‐LNM) after NAC based on pre‐NAC and after‐NAC ultrasonography images. Furthermore, they proposed two DLRNs (DLRN‐PCR and DLRN‐LNM) for two different tasks based on the clinical characteristics and DLR scores, which were generated from both DLR‐PCR and DLR‐LNM. Results In the validation and test cohorts, DLRN‐PCR exhibited areas under the receiver operating characteristic curves (AUCs) of 0.903 and 0.896 with sensitivities of 91.2% and 75.0%, respectively. DLRN‐LNM achieved AUCs of 0.853 and 0.863, specificities of 82.0% and 81.8%, and negative predictive values of 81.3% and 87.2% in the validation and test cohorts, respectively. The two DLRN models achieved satisfactory predictive performance based on different BC subtypes. Conclusions The proposed DLRN models have the potential to accurately predict the tumor PCR and LNM status after NAC. Plain language summary In this study, we proposed two deep learning radiomics nomogram models based on pre‐neoadjuvant chemotherapy (NAC) and preoperative ultrasonography images for independently predicting the status of tumor and axillary lymph node (ALN) after NAC. A more comprehensive assessment of the patient's condition after NAC can be achieved by predicting the status of the tumor and ALN separately. Our model can potentially provide a noninvasive and personalized method to offer decision support for organ preservation and avoidance of excessive surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yydragen应助聪明的大树采纳,获得30
刚刚
我爱学术完成签到,获得积分10
1秒前
IMMORTALS发布了新的文献求助10
1秒前
qingzeng完成签到,获得积分10
1秒前
2秒前
忧心的飞雪完成签到,获得积分10
2秒前
摸鱼大师完成签到 ,获得积分10
2秒前
2秒前
朱祥龙完成签到,获得积分10
2秒前
3秒前
烂漫成仁完成签到,获得积分10
3秒前
sevten完成签到,获得积分10
3秒前
3秒前
FashionBoy应助卡卡罗特采纳,获得10
3秒前
3秒前
kiwiii完成签到,获得积分10
4秒前
洁净青枫完成签到,获得积分20
5秒前
5秒前
jj发布了新的文献求助10
5秒前
xiaoyushang发布了新的文献求助10
5秒前
大个应助hui采纳,获得10
5秒前
情怀应助Tomma采纳,获得10
6秒前
英吉利25发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
韶卿完成签到,获得积分10
7秒前
NexusExplorer应助守培采纳,获得10
7秒前
7秒前
芋泥啵啵发布了新的文献求助10
8秒前
洁净青枫发布了新的文献求助10
8秒前
2780034682完成签到,获得积分10
9秒前
甄的艾你完成签到,获得积分10
9秒前
Neltharion发布了新的文献求助10
9秒前
9秒前
orixero应助明小丽采纳,获得10
9秒前
10秒前
stinkyfish发布了新的文献求助10
10秒前
weiwei完成签到 ,获得积分10
11秒前
小刺猬完成签到,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977279
求助须知:如何正确求助?哪些是违规求助? 3521546
关于积分的说明 11208673
捐赠科研通 3258557
什么是DOI,文献DOI怎么找? 1799294
邀请新用户注册赠送积分活动 878161
科研通“疑难数据库(出版商)”最低求助积分说明 806810