Robust air cavity generation on sacrificial microstructures for sustainable underwater drag reduction

阻力 材料科学 打滑(空气动力学) 微观结构 雷诺数 接触角 纳米技术 复合材料 机械 航空航天工程 工程类 湍流 物理
作者
Zhaochang Wang,Jiawei Ji,Yuhang Guo,Tongtong Tao,Xidong Hu,Yongqing Zhu,Xiaojun Liu,Kun Liu,Yunlong Jiao
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:121 (18) 被引量:5
标识
DOI:10.1063/5.0128049
摘要

Reducing fluid frictional drag at the solid–liquid interface is a promising strategy for improving the hydrodynamic properties of the structure in water, though so far it has remained unattainable without robust air cavities. Herein, we report a durable generation strategy of robust air cavity on the rough microstructured surface, which could achieve stable drag reduction even after 2000th water entry test. It is worth noting that the generation strategy is almost independent of the wear of surface microstructure, as the worn microstructures still keep a rough morphology and would alter the capillary driving force and prevent the spreading of the liquid film along the structure body. Therefore, the triple contact line is pinned at the solid–liquid interface and induces the generation of a complete air cavity. Comprehensive evaluation, including the mechanical and chemical stability tests, confirm that the microstructured spheres could produce robust cavities even after harsh destruction, and they also reduce the hydrodynamic drag by more than 70.8% at a higher Reynolds number of ∼4.9 × 104. Finally, the boundary slip at the solid–liquid interface of the microstructured surface is simulated, which concludes that the decrease in the contact angle at air–liquid interface and fraction of solid–liquid contact area on the wall would enhance the slip length of fluid, thus resulting in an obvious decreasing of frictional resistance at the solid–liquid interface. We believe that the present work provides a perspective on the sustainable construction of the robust cavity which may have important potential application value in the field of drag reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nano完成签到,获得积分10
1秒前
大个应助火星上书琴采纳,获得10
3秒前
安详的方盒完成签到,获得积分10
4秒前
科目三应助yancn采纳,获得10
6秒前
Ava应助牧歌采纳,获得10
8秒前
11秒前
庄默羽完成签到,获得积分10
11秒前
11秒前
无奈的香芦完成签到 ,获得积分10
16秒前
iman发布了新的文献求助10
16秒前
yunidesuuu完成签到,获得积分10
22秒前
Llllll发布了新的文献求助40
22秒前
田様应助Arueliano采纳,获得10
23秒前
科研通AI5应助热心金鱼采纳,获得20
25秒前
小白发布了新的文献求助10
25秒前
一澜透完成签到 ,获得积分10
27秒前
1am33in完成签到 ,获得积分10
29秒前
张昊坤完成签到 ,获得积分10
29秒前
CR完成签到,获得积分10
30秒前
lllllcc完成签到,获得积分10
30秒前
36秒前
小蘑菇应助破忒头采纳,获得30
36秒前
Llllll完成签到,获得积分10
38秒前
芊慧发布了新的文献求助10
39秒前
牛爱花发布了新的文献求助10
42秒前
wanci应助无限的葶采纳,获得30
44秒前
44秒前
45秒前
科研通AI5应助笑点低的靳采纳,获得10
46秒前
47秒前
CR发布了新的文献求助10
47秒前
破忒头发布了新的文献求助30
49秒前
科研通AI5应助wdb采纳,获得10
50秒前
LZ发布了新的文献求助10
50秒前
50秒前
wangmp66发布了新的文献求助10
52秒前
破忒头完成签到,获得积分10
56秒前
57秒前
慕青应助牛爱花采纳,获得10
58秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440