AI-guided auto-discovery of low-carbon cost-effective ultra-high performance concrete (UHPC)

工程类 碳纤维 废物管理 业务 材料科学 复合材料 复合数
作者
Soroush Mahjoubi,Rojyar Barhemat,Weina Meng,Yi Bao
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:189: 106741-106741 被引量:97
标识
DOI:10.1016/j.resconrec.2022.106741
摘要

• Auto-discovery of low-carbon ultra-high performance concrete (UHPC) is achieved. • Predictive models are established based on synthetic data and automated machine learning. • Compressive and flexural strengths, mini-slump spread, and porosity of UHPC are predicted. • Carbon footprint, embodied energy, cost, and mechanical properties are optimized. • New UHPC mixtures are discovered by evolutionary many-objective optimization. This paper presents an AI-guided approach to automatically discover low-carbon cost-effective ultra-high performance concrete (UHPC). The presented approach automates data augmentation, machine learning model generation, and mixture selection by integrating advanced techniques of generative modeling, automated machine learning, and many-objective optimization. New data are synthesized by generative modeling and semi-supervised learning to enlarge datasets for training machine learning models that are automatically generated to predict the compressive strength, flexural strength, mini-slump spread, and porosity of UHPC. The proposed approach was used to explore new UHPC mixtures in two design scenarios with different objectives. The first scenario maximizes the compressive and flexural strengths and minimizes porosity while retaining self-consolidation. The second scenario minimizes the life-cycle carbon footprint, embodied energy, and material cost, besides the objectives of the first scenario. The life-cycle carbon footprint, embodied energy, and material cost of the UHPC in the second scenario are respectively reduced by 73%, 71%, and 80%, compared with the UHPC in the first scenario. This research advances the capability of developing cementitious composites using AI-guided approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yanbeio完成签到,获得积分10
刚刚
JamesPei应助漂亮幻莲采纳,获得10
刚刚
Lumi发布了新的文献求助10
1秒前
2秒前
个性晓蓝发布了新的文献求助10
2秒前
WT完成签到 ,获得积分10
4秒前
科研小江发布了新的文献求助10
4秒前
qing爱的坡完成签到,获得积分10
4秒前
iris完成签到 ,获得积分10
4秒前
7秒前
8秒前
药丸发布了新的文献求助10
9秒前
lllkkk完成签到,获得积分10
10秒前
清话鹿酒发布了新的文献求助30
11秒前
11秒前
11秒前
13秒前
英俊的铭应助科研小江采纳,获得10
14秒前
HHHhjl完成签到 ,获得积分10
15秒前
FeliciaLee发布了新的文献求助10
15秒前
漂亮幻莲发布了新的文献求助10
16秒前
16秒前
17秒前
SSD完成签到,获得积分10
19秒前
张益达应助小马采纳,获得20
20秒前
21秒前
ephore应助药丸采纳,获得30
23秒前
粗犷的契发布了新的文献求助10
23秒前
EH完成签到,获得积分10
23秒前
along完成签到,获得积分20
23秒前
George Will完成签到,获得积分10
23秒前
32秒前
34秒前
janl发布了新的文献求助10
36秒前
孙朱珠完成签到,获得积分10
38秒前
不发一区不改名完成签到 ,获得积分10
39秒前
嘿嘿完成签到 ,获得积分10
39秒前
飘逸飞柏发布了新的文献求助10
41秒前
眼睛大的松鼠完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776393
求助须知:如何正确求助?哪些是违规求助? 4108299
关于积分的说明 12708322
捐赠科研通 3829407
什么是DOI,文献DOI怎么找? 2112613
邀请新用户注册赠送积分活动 1136450
关于科研通互助平台的介绍 1020103