AI-guided auto-discovery of low-carbon cost-effective ultra-high performance concrete (UHPC)

工程类 碳纤维 废物管理 业务 材料科学 复合材料 复合数
作者
Soroush Mahjoubi,Rojyar Barhemat,Weina Meng,Yi Bao
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:189: 106741-106741 被引量:97
标识
DOI:10.1016/j.resconrec.2022.106741
摘要

• Auto-discovery of low-carbon ultra-high performance concrete (UHPC) is achieved. • Predictive models are established based on synthetic data and automated machine learning. • Compressive and flexural strengths, mini-slump spread, and porosity of UHPC are predicted. • Carbon footprint, embodied energy, cost, and mechanical properties are optimized. • New UHPC mixtures are discovered by evolutionary many-objective optimization. This paper presents an AI-guided approach to automatically discover low-carbon cost-effective ultra-high performance concrete (UHPC). The presented approach automates data augmentation, machine learning model generation, and mixture selection by integrating advanced techniques of generative modeling, automated machine learning, and many-objective optimization. New data are synthesized by generative modeling and semi-supervised learning to enlarge datasets for training machine learning models that are automatically generated to predict the compressive strength, flexural strength, mini-slump spread, and porosity of UHPC. The proposed approach was used to explore new UHPC mixtures in two design scenarios with different objectives. The first scenario maximizes the compressive and flexural strengths and minimizes porosity while retaining self-consolidation. The second scenario minimizes the life-cycle carbon footprint, embodied energy, and material cost, besides the objectives of the first scenario. The life-cycle carbon footprint, embodied energy, and material cost of the UHPC in the second scenario are respectively reduced by 73%, 71%, and 80%, compared with the UHPC in the first scenario. This research advances the capability of developing cementitious composites using AI-guided approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小泉完成签到 ,获得积分10
1秒前
tom完成签到,获得积分10
1秒前
zhabgyyy完成签到,获得积分10
1秒前
feng完成签到,获得积分10
1秒前
wangzhaorong完成签到,获得积分20
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
linjunqi发布了新的文献求助10
3秒前
yuki关注了科研通微信公众号
4秒前
彼翎完成签到,获得积分10
4秒前
研友_Zlx3aZ发布了新的文献求助10
4秒前
kaida完成签到,获得积分10
4秒前
lucky完成签到 ,获得积分10
5秒前
二师兄来挨打完成签到,获得积分10
6秒前
chef发布了新的文献求助10
6秒前
Earnestlee完成签到,获得积分10
6秒前
ozok关注了科研通微信公众号
6秒前
wangzhaorong发布了新的文献求助10
7秒前
重要衬衫发布了新的文献求助10
7秒前
善良香岚完成签到,获得积分20
7秒前
xxxyt完成签到,获得积分20
8秒前
xixilulixiu完成签到 ,获得积分10
8秒前
FashionBoy应助大胆诗云采纳,获得10
9秒前
乐乐应助沚沐采纳,获得10
9秒前
caowen完成签到 ,获得积分10
9秒前
沙翠风完成签到,获得积分10
10秒前
11秒前
卓卓完成签到,获得积分10
11秒前
11秒前
12秒前
Lucas应助Lupin采纳,获得10
12秒前
彭于晏应助Lupin采纳,获得10
12秒前
小二郎应助Lupin采纳,获得10
12秒前
田様应助Lupin采纳,获得10
12秒前
SciGPT应助Lupin采纳,获得10
13秒前
科研通AI2S应助Lupin采纳,获得10
13秒前
Hello应助Lupin采纳,获得10
13秒前
今后应助Lupin采纳,获得10
13秒前
orixero应助Lupin采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490517
求助须知:如何正确求助?哪些是违规求助? 4589033
关于积分的说明 14423100
捐赠科研通 4521062
什么是DOI,文献DOI怎么找? 2477127
邀请新用户注册赠送积分活动 1462477
关于科研通互助平台的介绍 1435318