B-Cell Epitope Predictions Using Computational Methods

表位 计算生物学 抗原 计算机科学 抗体 生物 免疫学
作者
Dandan Zheng,Shide Liang,Chi Zhang
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 239-254 被引量:9
标识
DOI:10.1007/978-1-0716-2609-2_12
摘要

Identifying protein antigenic epitopes that are recognizable by antibodies is a key step in immunologic research. This type of research has broad medical applications, such as new immunodiagnostic reagent discovery, vaccine design, and antibody design. However, due to the countless possibilities of potential epitopes, the experimental search through trial and error would be too costly and time-consuming to be practical. To facilitate this process and improve its efficiency, computational methods were developed to predict both linear epitopes and discontinuous antigenic epitopes. For linear B-cell epitope prediction, many methods were developed, including PREDITOP, PEOPLE, BEPITOPE, BepiPred, COBEpro, ABCpred, AAP, BCPred, BayesB, BEOracle/BROracle, BEST, LBEEP, DRREP, iBCE-EL, SVMTriP, etc. For the more challenging yet important task of discontinuous epitope prediction, methods were also developed, including CEP, DiscoTope, PEPITO, ElliPro, SEPPA, EPITOPIA, PEASE, EpiPred, SEPIa, EPCES, EPSVR, etc. In this chapter, we will discuss computational methods for B-cell epitope predictions of both linear and discontinuous epitopes. SVMTriP and EPCES/EPCSVR, the most successful among the methods for each type of the predictions, will be used as model methods to detail the standard protocols. For linear epitope prediction, SVMTriP was reported to achieve a sensitivity of 80.1% and a precision of 55.2% with a fivefold cross-validation based on a large dataset, yielding an AUC of 0.702. For discontinuous or conformational B-cell epitope prediction, EPCES and EPCSVR were both benchmarked by a curated independent test dataset in which all antigens had no complex structures with the antibody. The identified epitopes by these methods were later independently validated by various biochemical experiments. For these three model methods, webservers and all datasets are publicly available at http://sysbio.unl.edu/SVMTriP , http://sysbio.unl.edu/EPCES/ , and http://sysbio.unl.edu/EPSVR/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzz完成签到,获得积分10
刚刚
充电宝应助caicai采纳,获得10
刚刚
DDDiamond发布了新的文献求助10
1秒前
yy完成签到,获得积分10
1秒前
wanci应助热情平凡采纳,获得10
2秒前
2秒前
Ziyi_Xu完成签到,获得积分10
2秒前
星星发布了新的文献求助10
4秒前
FashionBoy应助TianningSun采纳,获得10
4秒前
fei完成签到,获得积分10
4秒前
香蕉觅云应助李海涵采纳,获得10
5秒前
yanshapo完成签到,获得积分10
6秒前
梅子酒完成签到,获得积分10
8秒前
9秒前
fei发布了新的文献求助10
9秒前
是汐樾呀完成签到,获得积分10
9秒前
LiuSD发布了新的文献求助10
9秒前
11秒前
张浩威完成签到,获得积分10
12秒前
SHURT发布了新的文献求助10
12秒前
福桃完成签到,获得积分10
12秒前
结实抽屉完成签到,获得积分10
13秒前
Cherish应助Yancent采纳,获得50
14秒前
TianningSun发布了新的文献求助10
15秒前
15秒前
内向的初珍完成签到 ,获得积分20
16秒前
20秒前
李海涵发布了新的文献求助10
20秒前
20秒前
木穹完成签到,获得积分10
21秒前
soil完成签到,获得积分0
23秒前
冷笑完成签到,获得积分10
23秒前
25秒前
26秒前
大布发布了新的文献求助40
26秒前
27秒前
27秒前
谢谢各位大佬完成签到,获得积分10
30秒前
30秒前
咯噔完成签到,获得积分10
31秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801574
求助须知:如何正确求助?哪些是违规求助? 3347346
关于积分的说明 10333136
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681885
邀请新用户注册赠送积分活动 807767
科研通“疑难数据库(出版商)”最低求助积分说明 763867