Improving the deconvolution of spectra at finite temperatures by replacing spectrum with a neural network

反褶积 人工神经网络 正规化(语言学) 离散化 计算机科学 算法 盲反褶积 反问题 数学优化 应用数学 统计物理学 数学 人工智能 物理 数学分析
作者
Haidong Xie,Xueshuang Xiang,Yuanqing Chen
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:35 (4): 045701-045701
标识
DOI:10.1088/1361-648x/aca57a
摘要

Abstract In condensed matter physics studies, spectral information plays an important role in understanding the composition of materials. However, it is difficult to obtain a material’s spectrum information directly through experiments or simulations. For example, the spectral information deconvoluted by scanning tunneling spectroscopy suffers from the temperature broadening effect, which is a known ill-posed problem and makes the deconvolution results unstable. Existing methods, such as the maximum entropy method, tend to select an appropriate regularization to suppress unstable oscillations. However, the choice of regularization is difficult, and oscillations are not completely eliminated. We believe that the possible improvement direction is to pay different attention to different intervals. Combining stochastic optimization and deep learning, in this paper, we introduce a neural network-based strategy to solve the deconvolution problem. Because the neural network can represent any nonuniform piecewise linear function, our method replaces the target spectrum with a neural network and can find a better approximation solution through an accurate and efficient optimization. Experiments on theoretical datasets using superconductors demonstrate that the superconducting gap is more accurately estimated and oscillates less. Plug in real experimental data, our approach obtains clearer results for material analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
32kekediffers发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
高熵合金发布了新的文献求助10
3秒前
3秒前
dudu完成签到,获得积分10
3秒前
研友_VZG7GZ应助kano采纳,获得10
3秒前
幽默身影完成签到,获得积分20
3秒前
3秒前
qyn1234566完成签到,获得积分10
4秒前
赵赵发布了新的文献求助10
4秒前
4秒前
Akim应助Yanjun采纳,获得10
4秒前
5秒前
bkagyin应助cruise采纳,获得10
6秒前
橙子完成签到,获得积分10
6秒前
guo发布了新的文献求助10
7秒前
文艺的初之完成签到,获得积分10
7秒前
赘婿应助jimmy2025采纳,获得10
7秒前
8秒前
科研通AI6应助洁净的千凡采纳,获得10
8秒前
9秒前
9秒前
完美凝海完成签到,获得积分10
10秒前
风清扬应助墨客采纳,获得30
11秒前
白什么冰发布了新的文献求助10
12秒前
12秒前
12秒前
刘方欣发布了新的文献求助10
13秒前
马仕达发布了新的文献求助20
14秒前
14秒前
怕孤单的听寒完成签到,获得积分10
15秒前
15秒前
15秒前
深情安青应助烂漫静槐采纳,获得10
15秒前
郭鑫宇0901完成签到,获得积分10
16秒前
科研小白发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532468
求助须知:如何正确求助?哪些是违规求助? 4621206
关于积分的说明 14577283
捐赠科研通 4561064
什么是DOI,文献DOI怎么找? 2499144
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450333