Progressive Damage Analysis for Spherical Electrode Particles with Different Protective Structures for a Lithium-Ion Battery

材料科学 离子 电池(电) 复合材料 锂(药物) 锂离子电池 电解质 化学物理 电极 化学 热力学 物理化学 内分泌学 功率(物理) 有机化学 物理 医学
作者
Qi Liu,Jianguo Wang,Bowen Hu
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (8): 7492-7506 被引量:3
标识
DOI:10.1021/acsomega.2c06560
摘要

Charge-discharge in a lithium-ion battery may produce electrochemical adverse reactions in electrodes as well as electrolytes and induce local inhomogeneous deformation and even mechanical fracture. An electrode may be a solid core-shell structure, hollow core-shell structure, or multilayer structure and should maintain good performance in lithium-ion transport and structural stability in charge-discharge cycles. However, the balance between lithium-ion transport and fracture prevention in charge-discharge cycles is still an open issue. This study proposes a novel binding protective structure for lithium-ion battery and compares its performance during charge-discharge cycles with unprotective structure, core-shell structure and hollow structure. First, both solid and hollow core-shell structures are reviewed, and their analytical solutions of radial and hoop stresses are derived. Then, a novel binding protective structure is proposed to well-balance lithium-ionic permeability and structural stability. Third, the pros and cons of the performance at the outer structure are investigated. Both analytical and numerical results show that the binding protective structure serves with great fracture-proof effectiveness and high lithium-ion diffusion rate. It has better ion permeability than solid core-shell structure but worse structural stability than shell structure. A stress surge is observed at the binding interface with an order of magnitude usually higher than that of the core-shell structure. The radial tensile stress at interface may more easily induce interfacial debonding than superficial fracture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liars完成签到 ,获得积分10
1秒前
AHa完成签到,获得积分10
4秒前
今后应助陶然采纳,获得10
5秒前
6秒前
康康发布了新的文献求助10
6秒前
郭叠完成签到,获得积分10
7秒前
7秒前
kryptonite完成签到 ,获得积分10
7秒前
8秒前
隐形曼青应助执着柏柳采纳,获得10
8秒前
8秒前
9秒前
9秒前
光亮乘云完成签到,获得积分10
9秒前
健壮荧完成签到,获得积分10
11秒前
卡卡完成签到 ,获得积分10
12秒前
12秒前
不会画画发布了新的文献求助10
13秒前
13秒前
xiong发布了新的文献求助10
14秒前
喜马拉雅川完成签到,获得积分10
14秒前
lcy发布了新的文献求助10
14秒前
狂奔弟弟2发布了新的文献求助10
14秒前
成就的水之完成签到,获得积分10
15秒前
15秒前
ding应助玲子7采纳,获得30
15秒前
andy发布了新的文献求助10
16秒前
嬷嬷发布了新的文献求助20
18秒前
liangye发布了新的文献求助10
18秒前
18秒前
20秒前
WXY发布了新的文献求助10
20秒前
科研通AI2S应助lcy采纳,获得10
21秒前
不会画画完成签到,获得积分10
21秒前
执着柏柳发布了新的文献求助10
21秒前
一罐樱桃酱完成签到,获得积分10
22秒前
Can完成签到,获得积分10
23秒前
23秒前
俊逸向雪完成签到,获得积分10
23秒前
朴素的啤酒完成签到,获得积分10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225