Rapid seismic damage state assessment of RC frames using machine learning methods

随机森林 脆弱性(计算) 机器学习 梯度升压 计算机科学 人工智能 计算机安全
作者
Haoyou Zhang,Xiaowei Cheng,Yi Li,Dianjin He,Xiuli Du
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105797-105797 被引量:48
标识
DOI:10.1016/j.jobe.2022.105797
摘要

A rapid seismic damage state assessment of individual building is essential for a region-scale risk and vulnerability assessment that requires significant manpower, time, and computational efforts. In this study, three machine learning (ML) algorithms that exhibited high predictive accuracy in previous studies, namely random forest (RF), extremely gradient boosting (XGB), and active machine learning (AL) were used to develop models for rapidly assessing the seismic damage states of reinforced concrete (RC) frames after an earthquake. Compared to RF and XGB, the active machine learning develops an efficient model with a small number of instances by interactively selecting the valuable instances for desired outputs. Using these aforementioned algorithms, three predictive models were developed, tested, and validated using a comprehensive dataset which included a total of 9900 data points. The dataset was developed according to a non-linear time history analysis involving a combination of 199 RC frames and 50 ground motions. The results indicated that active machine learning predicted the damage states of RC frames with an accuracy of 84% in the testing dataset, followed by the XGB algorithm with an accuracy of 80%. These predictive models were also validated using actual damaged buildings in the Taiwan earthquake. Seismic design intensity (SDI) and spectrum intensity (SI) were the most important input features in the damage states of RC frames, with a relative importance factor exceeding 50% for the two features. Constructed periods have a non-negligible influence on the damage states of RC frames when these differ for regional buildings. Finally, an interactive and user-friendly graphical user interface (GUI) platform was created to provide a rapid seismic damage state assessment of RC frames. This study represents a pioneering step toward the application of AL in damage state assessment of existing RC frames.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
故意的勒完成签到,获得积分10
刚刚
1秒前
少林寺的小熊猫完成签到,获得积分10
1秒前
CodeCraft应助old杜采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
卷毛v发布了新的文献求助10
5秒前
科研通AI6应助YOLO采纳,获得10
5秒前
5秒前
小乐发布了新的文献求助10
6秒前
6秒前
OvO_4577发布了新的文献求助10
7秒前
sxj完成签到,获得积分20
7秒前
乱糟糟发布了新的文献求助10
8秒前
9秒前
9秒前
我是撒笔发布了新的文献求助10
11秒前
平安如意发布了新的文献求助10
12秒前
Jackson完成签到 ,获得积分10
12秒前
zhangjiyuan发布了新的文献求助10
13秒前
HOLLOW发布了新的文献求助10
15秒前
所所应助根深者叶茂采纳,获得10
15秒前
周文鑫完成签到,获得积分10
16秒前
汉堡包应助浅笑_随风采纳,获得10
16秒前
Owen应助肖肖采纳,获得10
16秒前
斯文败类应助电介质物理采纳,获得10
17秒前
南星完成签到 ,获得积分10
17秒前
缓慢的秋莲完成签到 ,获得积分10
18秒前
19秒前
浮游应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
虚心的雪冥完成签到,获得积分10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051