Multiscale Feature Enhancement Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 特征(语言学) 合成孔径雷达 人工智能 特征提取 计算机视觉 模式识别(心理学) 散斑噪声 斑点图案 遥感 语言学 地质学 哲学
作者
Zhen Wang,Jianxin Guo,Chuanlei Zhang,Buhong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:81
标识
DOI:10.1109/tgrs.2022.3224815
摘要

Aircraft detection in synthetic aperture radar (SAR) images plays an essential role in satellite observation and military decisions. Due to discrete scattering properties, speckle noise interference, and various aircraft types, many existing methods struggle to achieve the desired detection performance. In this article, we propose an innovative semantic condition constraint guided feature aware network (SCFNet) for detecting different aircraft categories in SAR images. First, considering the discrete scattering properties of aircraft, we design a local-global feature aware module (LGA-M) and morphological-semantic feature aware module (MSF-M), which can effectively extract the fine-grained feature information contained in SAR images. Second, to effectively fuse different feature information, we construct a feature fusion pyramid (FFP), which uses different branches and paths to reasonably merge multiple feature information types and suppresses background information interference. Third, according to the structure characteristics of aircraft, the global coordinate attention mechanism (G-CAT) is presented to highlight foreground target features and suppress speckle noise interference. Finally, we construct semantic condition constraints, including constraint condition setting, semantic information calculation, and template matching, to improve aircraft localization and recognition accuracy. Extensive experiments demonstrate that the proposed SCFNet can obtain state-of-the-art performance on the SAR aircraft detection dataset, which achieves AP and F1 Score of 94.83% and 95.58%, respectively. The related implementation codes will be made publicly available at https://github.com/darkseid-arch/AirDetection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lulalula完成签到,获得积分10
1秒前
铁甲小杨完成签到,获得积分10
1秒前
Dasha完成签到,获得积分10
1秒前
phil完成签到,获得积分10
1秒前
Forest完成签到,获得积分10
3秒前
星007完成签到,获得积分10
5秒前
六步郎完成签到,获得积分10
6秒前
刘文思完成签到,获得积分10
6秒前
7秒前
笑柳完成签到,获得积分10
9秒前
简单的易云完成签到,获得积分10
9秒前
Zp完成签到,获得积分10
10秒前
我是老大应助malistm采纳,获得10
12秒前
花样年华完成签到,获得积分0
13秒前
Aspirin发布了新的文献求助10
14秒前
篮孩子完成签到,获得积分10
14秒前
好好学习完成签到 ,获得积分10
14秒前
xin完成签到,获得积分10
16秒前
雪莉酒完成签到,获得积分10
16秒前
phoenix001完成签到,获得积分0
18秒前
ztt完成签到,获得积分10
20秒前
panda完成签到,获得积分10
23秒前
23秒前
鳗鱼不尤完成签到,获得积分10
23秒前
多罗罗完成签到,获得积分10
23秒前
23秒前
24秒前
shouyu29应助陈皮糖不酸采纳,获得10
24秒前
無期完成签到 ,获得积分10
25秒前
冷傲的忆秋完成签到,获得积分10
26秒前
bc应助112我的采纳,获得10
26秒前
司空豁完成签到 ,获得积分10
27秒前
年少有你完成签到,获得积分10
27秒前
奋斗雅香完成签到 ,获得积分10
29秒前
小纪完成签到 ,获得积分10
29秒前
韭菜发布了新的文献求助10
30秒前
liugm发布了新的文献求助10
31秒前
EW完成签到,获得积分10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788455
求助须知:如何正确求助?哪些是违规求助? 3333771
关于积分的说明 10263510
捐赠科研通 3049672
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802148
科研通“疑难数据库(出版商)”最低求助积分说明 760526