Multi-Objective Optimal Path Planning for Autonomous Robots with Moving Obstacles Avoidance in Dynamic Environments

计算机科学 运动规划 机器人 路径(计算) 地形 占用网格映射 任意角度路径规划 规划师 概率路线图 配置空间 数学优化 移动机器人 实时计算 人工智能 数学 生态学 物理 生物 程序设计语言 量子力学
作者
Kadari Neeraja,G Narsimha
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:13 (12) 被引量:1
标识
DOI:10.14569/ijacsa.2022.0131226
摘要

Path planning is vital for robust autonomous robot navigation. Driving in dynamic environments is particularly difficult. The majority of the work is based on the premise that a robot possesses a comprehensive and precise representation of its surroundings prior to its starting. The problem of partially knowing and dynamic environments has received little attention. This circumstance occurs when an exploratory robot or a robot without a floor plan or terrain map must move to its destination. Existing approaches for dynamic-path-planning design a preliminary path based-on known knowledge of the environment, then adjust locally by replanning the total path as obstacles are discovered by the robot's sensors, thereby sacrificing either optimality or computational efficacy. This paper presents a novel algorithm. A Near-Optimal Multi-Objective Path Planner (NO-MOPP), capable of planning time-efficient, near-optimal, and drivable paths in partially known and dynamic environments. It is an expansion of our earlier research contributions called "A Multi-Objective Hybrid Collision-free Optimal Path Finder (MOHC-OPF) for Autonomous Robots in known static environments" and "A Multi-Objective Hybrid Collision-free Near-Optimal Path Planner (MOHC-NODPP) for Autonomous Robots in Dynamic environments". In the environment, a mix of static and moving dynamic obstacles are present, both of which are expressed by a hybrid, discrete configuration space in an occupancy-grid map. The proposed approach is executed at two distinct levels. Using our earlier method, A Multi-Objective Collision-free Optimal Path Finder (MOHC-OPF), the initial optimal path is found in environment that includes only known stationery obstacles at the Global-path-planning level. On the second level, known as Local Re-planning, this optimal path is continuously refined by online re-planning to account for the movement of obstacles in the environment. The proposed method, A Near-Optimal Multi-Objective Path Planner (NO-MOPP), is used to keep the robot's sub-paths optimum while also avoiding dynamic obstacles. This is done while still obeying the robot's non-holonomic restrictions. The proposed technique is tested in simulation using a collection of standard maps. The simulation findings demonstrate the proposed method's ability to avoid static as well as dynamic obstacles, as well as its capacity to find a near-optimal-path to a goal location in environments that are constantly changing without collision. The optimal-path is determined by taking into account several performance measures, including path length, collision-free path, execution time, and smooth paths. 90% of studies utilizing the proposed method demonstrate that it is more effective than other methods for determining the shortest length and time-efficient smooth drivable paths. The proposed technique reduced average 15% path length and execution time compared to the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助lq采纳,获得10
1秒前
3秒前
XIXIXI完成签到 ,获得积分10
4秒前
阅遍SCI完成签到,获得积分10
5秒前
5秒前
lie列发布了新的文献求助10
6秒前
程汐南发布了新的文献求助10
6秒前
8秒前
冬青ouo完成签到,获得积分10
8秒前
fengxiu完成签到 ,获得积分10
9秒前
NexusExplorer应助科科采纳,获得10
10秒前
10秒前
Hilda007发布了新的文献求助10
11秒前
小波发布了新的文献求助20
11秒前
Yangyue完成签到,获得积分10
11秒前
桉韵沁完成签到,获得积分10
11秒前
11秒前
ash完成签到,获得积分10
12秒前
shelley发布了新的文献求助10
12秒前
琪琪发布了新的文献求助10
13秒前
萨赫蛋糕完成签到,获得积分10
14秒前
码头吃薯条完成签到,获得积分10
14秒前
15秒前
喵喵发布了新的文献求助10
15秒前
小祺发布了新的文献求助30
16秒前
17秒前
18秒前
买了束花完成签到,获得积分10
18秒前
20秒前
33发布了新的文献求助10
20秒前
20秒前
王亚平发布了新的文献求助10
21秒前
idiot发布了新的文献求助30
21秒前
Elk完成签到,获得积分10
22秒前
邱权威完成签到,获得积分10
22秒前
23秒前
科研通AI2S应助yzz采纳,获得10
24秒前
高贵书白发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073256
求助须知:如何正确求助?哪些是违规求助? 4293380
关于积分的说明 13378282
捐赠科研通 4114827
什么是DOI,文献DOI怎么找? 2253172
邀请新用户注册赠送积分活动 1257983
关于科研通互助平台的介绍 1190836