A fusion estimation of the peak tire–road friction coefficient based on road images and dynamic information

卡尔曼滤波器 摩擦系数 航程(航空) 传感器融合 车辆动力学 路面 融合 计算机科学 动力摩擦 计算机视觉 人工智能 汽车工程 工程类 材料科学 土木工程 航空航天工程 复合材料 哲学 语言学
作者
Hongyan Guo,Xu Zhao,Jun Liu,Qikun Dai,Hui Liu,Hong Chen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:189: 110029-110029 被引量:16
标识
DOI:10.1016/j.ymssp.2022.110029
摘要

To accurately acquire the peak tire–road friction coefficient, a fusion estimation framework combining vision and vehicle dynamic information is established. First, information for the road ahead is collected in advance from an image captured by a camera, and the road type with its typical range of tire–road friction coefficients is identified with a lightweight convolutional neural network. Then, an unscented Kalman filter (UKF) method is established to estimate the tire–road friction coefficient value directly according to the dynamic vehicle states. Next, the results from the road-type recognition and dynamic estimation methods are spatiotemporally synchronized. Finally, a confidence-based vision and vehicle dynamic fusion strategy is proposed to obtain an accurate peak tire–road friction coefficient. The virtual and real vehicle test results suggest that the proposed fusion estimation strategy can accurately determine the peak tire–road friction coefficient. The proposed strategy can more precisely acquire the tire–road friction coefficient than can the general vision-based estimation method and is superior to the dynamic-based estimation method in that it eliminates the need for sufficient tire excitation to some extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黑犬发布了新的文献求助10
刚刚
1秒前
key发布了新的文献求助10
1秒前
科研通AI5应助LuQihe采纳,获得10
1秒前
线下完成签到 ,获得积分10
1秒前
gmjinfeng完成签到,获得积分0
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
脑洞疼应助Nikii采纳,获得10
4秒前
楼满风发布了新的文献求助10
5秒前
5秒前
5秒前
宋佳顺发布了新的文献求助10
6秒前
Vi发布了新的文献求助100
7秒前
gxqqqqqqq发布了新的文献求助10
7秒前
DAVE完成签到,获得积分10
7秒前
8秒前
长林发布了新的文献求助10
8秒前
8秒前
方想完成签到,获得积分10
9秒前
于锦程完成签到,获得积分10
9秒前
9秒前
DE发布了新的文献求助10
10秒前
10秒前
Lucky发布了新的文献求助10
11秒前
11秒前
婧宝爸比爱学习完成签到,获得积分10
12秒前
duan完成签到,获得积分10
12秒前
12秒前
13秒前
Zan发布了新的文献求助20
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
zho应助科研通管家采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790721
求助须知:如何正确求助?哪些是违规求助? 3335649
关于积分的说明 10275642
捐赠科研通 3052119
什么是DOI,文献DOI怎么找? 1675026
邀请新用户注册赠送积分活动 803005
科研通“疑难数据库(出版商)”最低求助积分说明 761007