Advances in Microencapsulation of Flavor Substances: Preparation Techniques, Wall Material Selection, Characterization Methods, and Applications

风味 选择(遗传算法) 表征(材料科学) 生化工程 化学 材料科学 纳米技术 计算机科学 食品科学 工程类 人工智能
作者
Xiaodong Yang,Liang Yu,Kexin Li,Qingqing Hu,Jinxin He,Xie Jianchun
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.jafc.4c11399
摘要

This review systematically examines advances in flavor microencapsulation technology from 2014 to 2024, focusing on innovations in preparation techniques, trends in wall material selection, and characterization methods. Literature metrological analysis shows that spray drying is the predominant technology (25% of reports); its shortcomings in volatile flavor retention have driven improved strategies such as vacuum low-temperature drying, ultrasound assistance, and monodisperse atomization. Emerging technologies such as electrohydrodynamic methods (electrospinning/electrospraying) and supercritical fluid processing are favored due to their nonthermal advantages. Overall, traditional polysaccharides have been widely used due to their good emulsifying and stabilizing properties. In the meanwhile, plant-based polysaccharides (e.g., inulin, hemicellulose) and proteins (e.g., pea protein) are increasingly preferred as the wall materials driven by sustainability and clean-labeling requirements. Morphological analysis and particle size and distribution studies have highlighted the key role of microstructure in stability and release kinetics, with multicore and multishell structures optimizing controlled release performance. Despite progress, gaps remain in the standardized assessment of encapsulation efficacy, the cost-effectiveness of novel materials, and practical food applications. In the future, a combination of interdisciplinary approaches is needed to investigate low-energy preparation technologies, functionalized wall materials, and intelligent release mechanisms to achieve the better application of flavor microencapsulates in food.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
刚刚
酷波er应助GSQ采纳,获得10
1秒前
尊敬的糖豆完成签到,获得积分20
2秒前
多肽专家完成签到,获得积分10
2秒前
2秒前
思源应助一只龟龟采纳,获得10
3秒前
大个应助端庄的钢铁侠采纳,获得10
3秒前
4秒前
SaturnY完成签到,获得积分10
5秒前
明理致远发布了新的文献求助10
5秒前
OversizeZ完成签到,获得积分20
5秒前
哈哈哈发布了新的文献求助10
6秒前
wualexandra发布了新的文献求助10
7秒前
慕青应助整齐的难胜采纳,获得10
8秒前
8秒前
gdh发布了新的文献求助10
9秒前
11秒前
bkagyin应助yinyuli采纳,获得10
11秒前
解语花发布了新的文献求助10
11秒前
3080发布了新的文献求助10
11秒前
11秒前
12秒前
桐桐应助fish采纳,获得10
12秒前
Twinkle完成签到,获得积分10
13秒前
zxq1996完成签到 ,获得积分10
14秒前
15秒前
搜集达人应助wjx采纳,获得20
15秒前
在水一方应助wjx采纳,获得10
15秒前
无花果应助wjx采纳,获得10
15秒前
善学以致用应助wjx采纳,获得10
15秒前
Owen应助wjx采纳,获得20
15秒前
科研通AI2S应助wjx采纳,获得10
15秒前
16秒前
fan完成签到,获得积分10
16秒前
OversizeZ发布了新的文献求助30
17秒前
阿庆发布了新的文献求助10
17秒前
米乐时光完成签到 ,获得积分10
17秒前
坦率的从丹完成签到 ,获得积分10
17秒前
18秒前
落后秋烟发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821