Image Lens Flare Removal Using Adversarial Curve Learning

对抗制 人工智能 计算机科学 火炬 计算机视觉 图像(数学) 模式识别(心理学) 工程类 航空航天工程
作者
Yuyan Zhou,Dong Liang,Songcan Chen,Sheng-Jun Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2025.3567308
摘要

When taking images against strong light sources, the resulting images often contain heterogeneous flare artifacts. These artifacts can significantly affect image visual quality and downstream computer vision tasks. While collecting real data pairs of flare-corrupted/flare-free images for training flare removal models is challenging, current methods utilize the direct-add approach to synthesize training data. However, these methods do not consider automatic exposure and tone mapping in the image signal processing pipeline (ISP), leading to the limited generalization capability of deep model training using such data. Besides, existing light source recovery methods hardly recover multiple light sources due to the different sizes, shapes, and illuminance of various light sources. In this paper, we propose a solution to improve the performance of lens flare removal by revisiting the ISP, remodeling the principle of automatic exposure in the synthesis pipeline, and designing a more reliable light source recovery strategy. The new pipeline approaches realistic imaging by discriminating the local and global illumination through a convex combination, avoiding global illumination shifting and local over-saturation. Moreover, the current deep models are only generalized to specific devices due to the diversity of cameras' ISPs. To achieve better generalization on different devices, we formulate the generalization problem as an adversarial training problem and embed an adversarial curve learning (ACL) paradigm in the synthesis pipeline to gain better performance. For recovering multiple light sources, our strategy convexly averages the input and output of the neural network based on illuminance levels, thereby avoiding the need for a hard threshold in identifying light sources. We also contribute a new flare removal testing dataset containing the flare-corrupted images captured by fifteen types of consumer electronics. The dataset facilitates the verification of the generalization capability of flare removal methods. Extensive experiments show that our solution can effectively improve the performance of lens flare removal and push the frontier toward more general situations. Code is made publicly available at: github.com/YuyanZhou1/Improving-Lens-Flare-Removal.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
资山雁完成签到 ,获得积分10
2秒前
东方诩完成签到,获得积分10
3秒前
雪白胡萝卜完成签到,获得积分10
3秒前
star完成签到,获得积分10
4秒前
wangwei完成签到 ,获得积分10
5秒前
聪慧语山完成签到 ,获得积分0
5秒前
tzy6665完成签到,获得积分10
9秒前
从容藏今完成签到 ,获得积分10
11秒前
S月小小完成签到,获得积分10
11秒前
科研小白完成签到,获得积分10
13秒前
LioXH完成签到,获得积分10
13秒前
清脆靳完成签到,获得积分10
15秒前
LioXH发布了新的文献求助10
16秒前
18秒前
19秒前
偏翩完成签到 ,获得积分10
20秒前
22秒前
hjygzv完成签到,获得积分10
22秒前
烟火会翻滚完成签到,获得积分10
24秒前
阔达碧空发布了新的文献求助10
26秒前
当女遇到乔完成签到 ,获得积分10
30秒前
sysi完成签到 ,获得积分10
31秒前
欢喜板凳完成签到 ,获得积分10
35秒前
luz完成签到,获得积分10
39秒前
40秒前
772829完成签到 ,获得积分10
40秒前
kingwill完成签到,获得积分0
43秒前
殷勤的凝海完成签到 ,获得积分10
45秒前
叮叮当当完成签到,获得积分10
47秒前
畅快山兰完成签到 ,获得积分10
48秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
48秒前
小庄完成签到 ,获得积分10
50秒前
健康好运和完成签到 ,获得积分20
50秒前
zxx完成签到 ,获得积分10
51秒前
无花果应助yue4yue采纳,获得10
51秒前
苏苏完成签到 ,获得积分10
52秒前
眼睛大智宸完成签到,获得积分10
54秒前
细心妙菡完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352796
关于积分的说明 10360441
捐赠科研通 3068787
什么是DOI,文献DOI怎么找? 1685259
邀请新用户注册赠送积分活动 810410
科研通“疑难数据库(出版商)”最低求助积分说明 766108