清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ECPS: Cross Pseudo Supervision Based on Ensemble Learning for Semi-Supervised Remote Sensing Change Detection

变更检测 计算机科学 遥感 人工智能 集成学习 地质学
作者
Yuqun Yang,Xu Tang,Jingjing Ma,Xiangrong Zhang,Shiji Pei,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:6
标识
DOI:10.1109/tgrs.2024.3370236
摘要

Semi-supervised learning aims to exploit the potential of unlabeled data to enhance model performance, which makes it suitable for addressing the challenge of limited labeled data. As a popular technology, pseudo-label is widely applied in many semi-supervised remote sensing (RS) change detection methods. However, when facing limited labeled data, abundant low-quality pseudo-labels from a poorly-performing model hinder the effective enhancement of model performance. To address this issue, we propose a novel semi-supervised strategy, named ensemble cross pseudo supervision (ECPS). The utilization of ensemble learning to merge outputs from several change detection models enhances pseudo-label quality, leading to more accurate change information and a significant boost in model performance, even with limited labeled data. In this method, adopting crosswise supervision ensures that no additional inference costs caused by ensemble learning are consumed. This provides both high efficiency and effectiveness for identifying land-cover changes. On the other hand, a simple yet effective ensemble strategy is proposed, which allows to manually adjust the model's tendency towards higher precision or recall for satisfying practical requirements. We conduct extensive experiments on four public RS change detection datasets, and the promising results demonstrate the superiority of the proposed method across various numbers of labeled samples. Our source codes are available at https://github.com/TangXu-Group/ECPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷茫的一代完成签到,获得积分10
32秒前
科研通AI2S应助puzhongjiMiQ采纳,获得10
38秒前
puzhongjiMiQ完成签到,获得积分10
46秒前
隐形曼青应助科研通管家采纳,获得10
2分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
xy完成签到 ,获得积分10
2分钟前
风华正茂发布了新的文献求助10
2分钟前
风华正茂完成签到,获得积分20
2分钟前
widesky777完成签到 ,获得积分0
3分钟前
核桃应助qq采纳,获得10
3分钟前
TongKY完成签到 ,获得积分10
5分钟前
6分钟前
CC发布了新的文献求助10
6分钟前
清爽的冬寒完成签到 ,获得积分10
6分钟前
小黄鱼完成签到 ,获得积分10
8分钟前
poki完成签到 ,获得积分10
8分钟前
小黑鲨完成签到 ,获得积分10
8分钟前
MchemG应助钱念波采纳,获得10
10分钟前
Fortune完成签到 ,获得积分10
11分钟前
斯文败类应助钱念波采纳,获得10
11分钟前
SDNUDRUG完成签到,获得积分10
11分钟前
钱念波完成签到,获得积分10
12分钟前
ylyao完成签到 ,获得积分10
12分钟前
wangyu699123完成签到,获得积分10
12分钟前
pp‘s完成签到 ,获得积分10
13分钟前
华仔应助123采纳,获得10
14分钟前
WaitP应助nenoaowu采纳,获得10
14分钟前
科研通AI2S应助nenoaowu采纳,获得10
14分钟前
14分钟前
沉默的友安完成签到 ,获得积分10
14分钟前
123发布了新的文献求助10
14分钟前
16分钟前
积极的中蓝完成签到 ,获得积分10
16分钟前
科目三应助科研通管家采纳,获得10
18分钟前
MchemG应助科研通管家采纳,获得10
18分钟前
18分钟前
lixuebin完成签到 ,获得积分10
18分钟前
18分钟前
19分钟前
19分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798505
求助须知:如何正确求助?哪些是违规求助? 3344027
关于积分的说明 10318337
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679682
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340