亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer-based Discriminative and Strong Representation Deep Hashing for Cross-Modal Retrieval

计算机科学 判别式 散列函数 人工智能 特征学习 变压器 利用 编码器 自然语言处理 情报检索 模式识别(心理学) 计算机安全 量子力学 操作系统 物理 电压
作者
Suqing Zhou,Yang Han,Ning Chen,Siyu Huang,Kostromitin Konstantin Igorevich,Jie Luo,Peiying Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 140041-140055
标识
DOI:10.1109/access.2023.3339581
摘要

Cross-modal hashing retrieval has attracted extensive attention due to its low storage requirements as well as high retrieval efficiency. In particular, how to more fully exploit the correlation of different modality data and generate a more distinguished representation is the key to improving the performance of this method. Moreover, Transformer-based models have been widely used in various fields, including natural language processing, due to their powerful contextual information processing capabilities. Based on these motivations, we propose a Transformer-based Distinguishing Strong Representation Deep Hashing (TDSRDH). For text modality, since the sequential relations between words imply semantic relations that are not independent relations, we thoughtfully encode them using a transformer-based encoder to obtain a strong representation. In addition, we propose a triple-supervised loss based on the commonly used pairwise loss and quantization loss. The latter two ensure the learned features and hash-codes can preserve the similarity of the original data during the learning process. The former ensures that the distance between similar instances is closer and the distance between dissimilar instances is farther. So that TDSRDH can generate more discriminative representations while preserving the similarity between modalities. Finally, experiments on the three datasets MIRFLICKR-25K , IAPR TC-12 , and NUS-WIDE demonstrated the superiority of TDSRDH over the other baselines. Moreover, the effectiveness of the proposed idea was demonstrated by ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助ladette采纳,获得10
10秒前
26秒前
aaaaa发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
50秒前
52秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
aaaaa完成签到,获得积分10
55秒前
英俊绿海完成签到 ,获得积分10
1分钟前
1分钟前
小泉完成签到 ,获得积分10
1分钟前
以won完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
司空起眸发布了新的文献求助10
2分钟前
司空起眸完成签到,获得积分20
2分钟前
研友_VZG7GZ应助庾稀采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
jyy应助qiqi采纳,获得10
3分钟前
3分钟前
Eri_SCI完成签到 ,获得积分10
3分钟前
ranj完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助150
3分钟前
3分钟前
Akim应助Jack采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
庾稀发布了新的文献求助10
4分钟前
共享精神应助00小费0采纳,获得10
5分钟前
5分钟前
00小费0发布了新的文献求助10
5分钟前
Liufgui应助Wei采纳,获得10
5分钟前
haprier完成签到 ,获得积分10
5分钟前
00小费0完成签到,获得积分20
5分钟前
机灵水卉完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4029550
求助须知:如何正确求助?哪些是违规求助? 3568398
关于积分的说明 11356229
捐赠科研通 3299446
什么是DOI,文献DOI怎么找? 1816718
邀请新用户注册赠送积分活动 890920
科研通“疑难数据库(出版商)”最低求助积分说明 813921