Transformer-based Discriminative and Strong Representation Deep Hashing for Cross-Modal Retrieval

计算机科学 判别式 散列函数 人工智能 特征学习 变压器 利用 编码器 自然语言处理 情报检索 模式识别(心理学) 物理 计算机安全 量子力学 电压 操作系统
作者
Suqing Zhou,Yang Han,Ning Chen,Siyu Huang,Kostromitin Konstantin Igorevich,Jie Luo,Peiying Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 140041-140055
标识
DOI:10.1109/access.2023.3339581
摘要

Cross-modal hashing retrieval has attracted extensive attention due to its low storage requirements as well as high retrieval efficiency. In particular, how to more fully exploit the correlation of different modality data and generate a more distinguished representation is the key to improving the performance of this method. Moreover, Transformer-based models have been widely used in various fields, including natural language processing, due to their powerful contextual information processing capabilities. Based on these motivations, we propose a Transformer-based Distinguishing Strong Representation Deep Hashing (TDSRDH). For text modality, since the sequential relations between words imply semantic relations that are not independent relations, we thoughtfully encode them using a transformer-based encoder to obtain a strong representation. In addition, we propose a triple-supervised loss based on the commonly used pairwise loss and quantization loss. The latter two ensure the learned features and hash-codes can preserve the similarity of the original data during the learning process. The former ensures that the distance between similar instances is closer and the distance between dissimilar instances is farther. So that TDSRDH can generate more discriminative representations while preserving the similarity between modalities. Finally, experiments on the three datasets MIRFLICKR-25K , IAPR TC-12 , and NUS-WIDE demonstrated the superiority of TDSRDH over the other baselines. Moreover, the effectiveness of the proposed idea was demonstrated by ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiixix发布了新的文献求助10
3秒前
微风418发布了新的文献求助10
3秒前
好好学习完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助T拐拐采纳,获得10
6秒前
10秒前
obcx完成签到,获得积分10
10秒前
万严发布了新的文献求助10
10秒前
昱昱完成签到 ,获得积分10
11秒前
JIANYOUFU发布了新的文献求助10
11秒前
T拐拐发布了新的文献求助20
12秒前
13秒前
一一应助lxcy0612采纳,获得10
13秒前
远志发布了新的文献求助10
17秒前
19秒前
JIANYOUFU完成签到,获得积分10
21秒前
万严完成签到,获得积分10
21秒前
22秒前
23秒前
星辰大海应助费雪卉采纳,获得10
23秒前
24秒前
25秒前
T拐拐发布了新的文献求助10
26秒前
莫离完成签到,获得积分10
26秒前
27秒前
佐小叶完成签到 ,获得积分10
28秒前
pi发布了新的文献求助10
29秒前
南苑完成签到 ,获得积分10
30秒前
30秒前
yifanchen发布了新的文献求助10
31秒前
科研通AI5应助haki采纳,获得10
33秒前
34秒前
杰杰发布了新的文献求助10
34秒前
pi完成签到,获得积分10
34秒前
猫猫完成签到,获得积分10
34秒前
36秒前
坦率的夜玉完成签到 ,获得积分10
37秒前
38秒前
123完成签到,获得积分10
40秒前
40秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801460
求助须知:如何正确求助?哪些是违规求助? 3347244
关于积分的说明 10332707
捐赠科研通 3063497
什么是DOI,文献DOI怎么找? 1681786
邀请新用户注册赠送积分活动 807733
科研通“疑难数据库(出版商)”最低求助积分说明 763867