A Multi-dimensional Unified Concavity and Convexity Detection Method Based on Geometric Algebra

凸性 多边形(计算机图形学) 几何本原 计算机科学 正多边形 几何规划 几何造型 数学 算法 人工智能 数学优化 几何学 电信 金融经济学 帧(网络) 经济
作者
Jiyi Zhang,Tianzi Wei,Ruitong Liu,F. Yang,Yingying Wei,Jingyu Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 188-199
标识
DOI:10.1007/978-3-031-50078-7_15
摘要

The detection of concavity and convexity of vertices and edges of three-dimensional (3D) geometric objects is a classic problem in the field of computer graphics. As the foundation of other related graphics algorithms and operations, scholars have proposed many algorithms for determining the concavity and convexity of vertices and edges. However, existing concavity and convexity detection algorithms mainly focus on vertices and not on concavity and convexity detection methods for edges of 3D geometric objects. Furthermore, existing algorithms often require different detection methods when dealing with two-dimensional (2D) planar geometric objects and 3D spatial geometric objects. This means that the algorithm structure of those algorithms becomes very complex when dealing with concavity and convexity judgments involving both planar polygon vertices and 3D geometric object edges. To solve the above problems, this paper proposes a multi-dimensional unified concave convex detection algorithm framework for geometric objects taking advantage of geometric algebra in multi-dimensional unified expression and calculation. The method proposed in this article can not only achieve concavity and convexity detection of planar polygon vertices and 3D geometric object vertices based on unified rules, but also further achieve concavity and convexity detection of 3D geometric object edges on this basis. By unifying the framework and detection rules of different dimensional geometric object concavity detection algorithms, the complexity of synchronous detection algorithms for planar polygon vertices and 3D geometric object vertices and edges concavity can be effectively simplified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后妖妖发布了新的文献求助10
1秒前
1秒前
坚定的诗双完成签到,获得积分10
2秒前
2秒前
1723278678关注了科研通微信公众号
3秒前
jitanxiang发布了新的文献求助10
3秒前
6秒前
cruiser发布了新的文献求助30
6秒前
沉默水风完成签到,获得积分10
6秒前
乐乐应助含蓄的魂幽采纳,获得10
7秒前
Ava应助猩心采纳,获得30
8秒前
明亮的幻然完成签到,获得积分10
8秒前
8秒前
9秒前
忐忑的黑猫应助南楼青主采纳,获得10
10秒前
achenghn发布了新的文献求助10
13秒前
朱文韬发布了新的文献求助10
13秒前
苹果丝完成签到 ,获得积分10
13秒前
华仔应助丰富的小甜瓜采纳,获得10
15秒前
bkagyin应助tian采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
认真宛白发布了新的文献求助10
18秒前
19秒前
papa应助kkk采纳,获得50
20秒前
20秒前
20秒前
1723278678发布了新的文献求助10
21秒前
猩心发布了新的文献求助30
23秒前
ymhasslby发布了新的文献求助10
23秒前
24秒前
24秒前
科研通AI5应助尊敬的飞槐采纳,获得10
25秒前
26秒前
27秒前
栗子完成签到,获得积分10
27秒前
28秒前
pluto应助cruiser采纳,获得10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783797
求助须知:如何正确求助?哪些是违规求助? 3329060
关于积分的说明 10239593
捐赠科研通 3044467
什么是DOI,文献DOI怎么找? 1671031
邀请新用户注册赠送积分活动 800057
科研通“疑难数据库(出版商)”最低求助积分说明 759179