Learning Graph ODE for Continuous-Time Sequential Recommendation

计算机科学 颂歌 图形 推荐系统 理论计算机科学 人工智能 情报检索 数学 应用数学
作者
Yifang Qin,Wei Ju,Hongjun Wu,Xiao Luo,Ming Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (7): 3224-3236 被引量:19
标识
DOI:10.1109/tkde.2024.3349397
摘要

Sequential recommendation aims at understanding user preference by capturing successive behavior correlations, which are usually represented as the item purchasing sequences based on their past interactions. Existing efforts generally predict the next item via modeling the sequential patterns. Despite effectiveness, there exist two natural deficiencies: (i) user preference is dynamic in nature, and the evolution of collaborative signals is often ignored; and (ii) the observed interactions are often irregularly-sampled, while existing methods model item transitions assuming uniform intervals. Thus, how to effectively model and predict the underlying dynamics for user preference becomes a critical research problem. To tackle the above challenges, in this paper, we focus on continuous-time sequential recommendation and propose a principled graph ordinary differential equation framework named GDERec. Technically, GDERec is characterized by an autoregressive graph ordinary differential equation consisting of two components, which are parameterized by two tailored graph neural networks (GNNs) respectively to capture user preference from the perspective of hybrid dynamical systems. On the one hand, we introduce a novel ordinary differential equation based GNN to implicitly model the temporal evolution of the user-item interaction graph. On the other hand, an attention-based GNN is proposed to explicitly incorporate collaborative attention to interaction signals when the interaction graph evolves over time. The two customized GNNs are trained alternately in an autoregressive manner to track the evolution of the underlying system from irregular observations, and thus learn effective representations of users and items beneficial to the sequential recommendation. Extensive experiments on five benchmark datasets demonstrate the superiority of our model over various state-of-the-art recommendation methods
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fduqyy发布了新的文献求助10
4秒前
yu完成签到,获得积分10
8秒前
8秒前
9秒前
11秒前
悦耳的海燕完成签到 ,获得积分10
12秒前
12秒前
14秒前
落后紫夏完成签到,获得积分10
15秒前
16秒前
chen发布了新的文献求助10
16秒前
19秒前
20秒前
22秒前
23秒前
Ava应助chen采纳,获得10
26秒前
LVVVB完成签到,获得积分10
27秒前
28秒前
清风明月发布了新的文献求助10
33秒前
ding应助chendi20082009采纳,获得30
34秒前
居单在此发布了新的文献求助50
37秒前
37秒前
杨震发布了新的文献求助10
41秒前
45秒前
柠檬完成签到 ,获得积分10
46秒前
涛1118完成签到,获得积分10
49秒前
wanghao完成签到 ,获得积分10
49秒前
yuan发布了新的文献求助10
51秒前
51秒前
无情吐司关注了科研通微信公众号
52秒前
赤侯完成签到,获得积分10
53秒前
54秒前
粗心的易云完成签到 ,获得积分10
55秒前
朴素太阳发布了新的文献求助20
56秒前
存在发布了新的文献求助10
57秒前
balabala完成签到,获得积分10
59秒前
59秒前
温暖的鸿完成签到 ,获得积分10
1分钟前
涛1118发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224182
捐赠科研通 3040851
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649