Deep Reinforcement Learning Enabled Multi-UAV Scheduling for Disaster Data Collection With Time-Varying Value

计算机科学 强化学习 调度(生产过程) 数据收集 实时计算 分布式计算 人工智能 工程类 运营管理 数学 统计
作者
P.-J. Wan,Gangyan Xu,Jiawei Chen,Yaoming Zhou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6691-6702 被引量:26
标识
DOI:10.1109/tits.2023.3345280
摘要

The congestion and disruption of information infrastructures frequently happen during disasters, which would hinder the understanding of disaster scenarios, and thus impede rapid response activities. With the advantages of high flexibility and efficiency, this paper proposes to use UAVs as temporary and mobile relays for disaster data collection. However, different from many existing data collection scenarios in industrial sectors, the disaster data value varies with UAV arrival time and service time in terms of their importance for disaster response, which makes the scheduling of UAVs challenging. To address such a problem, this paper proposes an attention-based Deep Reinforcement Learning (DRL) method for multi-UAV scheduling considering time-varying data value. Specifically, the problem is modeled as a specific team orienteering problem with time-varying value. Then the relationships between UAV route selection and service time at each node are analyzed, based on which the computing efficiency for solution algorithms can be improved. After that, an attention-based DRL method is developed, with a calibrated attention model and decoding method. Finally, systematic computational experiments are conducted to evaluate the performance of the proposed method, which demonstrates its superiority over popular methods in UAV scheduling, especially for large-scale and complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助元神采纳,获得10
1秒前
ccm应助元神采纳,获得10
1秒前
情怀应助元神采纳,获得10
1秒前
1秒前
张凯茜发布了新的文献求助10
1秒前
熊二发布了新的文献求助10
1秒前
刘玉欣发布了新的文献求助10
2秒前
2秒前
小程同学完成签到,获得积分10
3秒前
3秒前
华仔应助CoNiCoNi采纳,获得10
3秒前
科研通AI6应助luo采纳,获得10
4秒前
收手吧大哥发布了新的文献求助100
5秒前
huoguo完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
十八鱼发布了新的文献求助10
8秒前
8秒前
太阳发布了新的文献求助10
9秒前
顾瑶完成签到,获得积分10
9秒前
领导范儿应助健康的开山采纳,获得10
9秒前
研友_VZG7GZ应助博士采纳,获得10
9秒前
明理友琴完成签到,获得积分10
10秒前
李爽完成签到,获得积分10
11秒前
哎呦喂完成签到,获得积分10
11秒前
11秒前
11秒前
ZAL完成签到,获得积分10
11秒前
iNk应助季博常采纳,获得10
12秒前
顾矜应助peace采纳,获得10
12秒前
12秒前
一只完成签到,获得积分10
13秒前
可爱的函函应助小小采纳,获得30
13秒前
HonamC完成签到,获得积分10
13秒前
迷你的书包完成签到,获得积分20
13秒前
尘扬发布了新的文献求助10
13秒前
听禾响完成签到 ,获得积分10
14秒前
隐形香水完成签到,获得积分10
14秒前
HeAuBook举报伊尹求助涉嫌违规
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262