Shape-Scale Co-Awareness Network for 3D Brain Tumor Segmentation

背景(考古学) 卷积神经网络 比例(比率) 分割 人工智能 特征(语言学) 计算机科学 图像分割 计算机视觉 匹配(统计) 形状上下文 空间语境意识 特征提取 模式识别(心理学) 图像(数学) 物理 数学 古生物学 哲学 统计 生物 量子力学 语言学
作者
Lifang Zhou,Yu Jiang,Weisheng Li,Jun Hu,Shenhai Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2495-2508 被引量:23
标识
DOI:10.1109/tmi.2024.3368531
摘要

The accurate segmentation of brain tumor is significant in clinical practice. Convolutional Neural Network (CNN)-based methods have made great progress in brain tumor segmentation due to powerful local modeling ability. However, brain tumors are frequently pattern-agnostic, i.e. variable in shape, size and location, which can not be effectively matched by traditional CNN-based methods with local and regular receptive fields. To address the above issues, we propose a shape-scale co-awareness network (S 2 CA-Net) for brain tumor segmentation, which can efficiently learn shape-aware and scale-aware features simultaneously to enhance pattern-agnostic representations. Primarily, three key components are proposed to accomplish the co-awareness of shape and scale. The Local-Global Scale Mixer (LGSM) decouples the extraction of local and global context by adopting the CNN-Former parallel structure, which contributes to obtaining finer hierarchical features. The Multi-level Context Aggregator (MCA) enriches the scale diversity of input patches by modeling global features across multiple receptive fields. The Multi-Scale Attentive Deformable Convolution (MS-ADC) learns the target deformation based on the multiscale inputs, which motivates the network to enforce feature constraints both in terms of scale and shape for optimal feature matching. Overall, LGSM and MCA focus on enhancing the scale-awareness of the network to cope with the size and location variations, while MS-ADC focuses on capturing deformation information for optimal shape matching. Finally, their effective integration prompts the network to perceive variations in shape and scale simultaneously, which can robustly tackle the variations in patterns of brain tumors. The experimental results on BraTS 2019, BraTS 2020, MSD BTS Task and BraTS2023-MEN show that S 2 CA-Net has superior overall performance in accuracy and efficiency compared to other state-of-the-art methods. Code: https://github.com/jiangyu945/S2CA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
开放的无声完成签到 ,获得积分10
1秒前
1秒前
wsq发布了新的文献求助10
1秒前
洞两发布了新的文献求助10
3秒前
zyz完成签到 ,获得积分10
4秒前
4秒前
202211010668发布了新的文献求助10
4秒前
Hello应助忘多采纳,获得10
4秒前
Kristine发布了新的文献求助10
5秒前
xiaoxiang发布了新的文献求助10
5秒前
6秒前
大模型应助NMC采纳,获得10
7秒前
今后应助NMC采纳,获得10
7秒前
领导范儿应助NMC采纳,获得10
7秒前
田様应助NMC采纳,获得10
7秒前
香蕉觅云应助NMC采纳,获得10
7秒前
Lucas应助NMC采纳,获得10
7秒前
丘比特应助NMC采纳,获得10
7秒前
完美世界应助Bi8bo采纳,获得30
7秒前
思源应助NMC采纳,获得10
7秒前
Hello应助NMC采纳,获得10
7秒前
星辰大海应助NMC采纳,获得10
7秒前
酷炫蛋挞完成签到 ,获得积分10
7秒前
Lucas应助Wd采纳,获得10
8秒前
ffff发布了新的文献求助10
10秒前
12秒前
12秒前
zhaosiqi完成签到 ,获得积分10
13秒前
一颗西柚完成签到 ,获得积分10
13秒前
粗心的忆山完成签到 ,获得积分10
14秒前
NexusExplorer应助祥印采纳,获得10
15秒前
Ally发布了新的文献求助10
16秒前
王木木完成签到,获得积分10
18秒前
18秒前
18秒前
Wb完成签到,获得积分10
19秒前
有魅力的白玉完成签到 ,获得积分10
19秒前
20秒前
Beverly完成签到,获得积分10
20秒前
深情安青应助亚李采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499122
求助须知:如何正确求助?哪些是违规求助? 4596125
关于积分的说明 14452445
捐赠科研通 4529246
什么是DOI,文献DOI怎么找? 2481872
邀请新用户注册赠送积分活动 1465918
关于科研通互助平台的介绍 1438802