亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Shape-Scale Co-Awareness Network for 3D Brain Tumor Segmentation

背景(考古学) 卷积神经网络 比例(比率) 分割 人工智能 特征(语言学) 计算机科学 图像分割 计算机视觉 匹配(统计) 形状上下文 空间语境意识 特征提取 模式识别(心理学) 图像(数学) 物理 数学 古生物学 哲学 统计 生物 量子力学 语言学
作者
Lifang Zhou,Yu Jiang,Weisheng Li,Jun Hu,Shenhai Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2495-2508 被引量:23
标识
DOI:10.1109/tmi.2024.3368531
摘要

The accurate segmentation of brain tumor is significant in clinical practice. Convolutional Neural Network (CNN)-based methods have made great progress in brain tumor segmentation due to powerful local modeling ability. However, brain tumors are frequently pattern-agnostic, i.e. variable in shape, size and location, which can not be effectively matched by traditional CNN-based methods with local and regular receptive fields. To address the above issues, we propose a shape-scale co-awareness network (S 2 CA-Net) for brain tumor segmentation, which can efficiently learn shape-aware and scale-aware features simultaneously to enhance pattern-agnostic representations. Primarily, three key components are proposed to accomplish the co-awareness of shape and scale. The Local-Global Scale Mixer (LGSM) decouples the extraction of local and global context by adopting the CNN-Former parallel structure, which contributes to obtaining finer hierarchical features. The Multi-level Context Aggregator (MCA) enriches the scale diversity of input patches by modeling global features across multiple receptive fields. The Multi-Scale Attentive Deformable Convolution (MS-ADC) learns the target deformation based on the multiscale inputs, which motivates the network to enforce feature constraints both in terms of scale and shape for optimal feature matching. Overall, LGSM and MCA focus on enhancing the scale-awareness of the network to cope with the size and location variations, while MS-ADC focuses on capturing deformation information for optimal shape matching. Finally, their effective integration prompts the network to perceive variations in shape and scale simultaneously, which can robustly tackle the variations in patterns of brain tumors. The experimental results on BraTS 2019, BraTS 2020, MSD BTS Task and BraTS2023-MEN show that S 2 CA-Net has superior overall performance in accuracy and efficiency compared to other state-of-the-art methods. Code: https://github.com/jiangyu945/S2CA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hn发布了新的文献求助10
5秒前
丘比特应助科研通管家采纳,获得10
8秒前
归尘应助科研通管家采纳,获得10
8秒前
唐泽雪穗应助科研通管家采纳,获得10
9秒前
归尘应助科研通管家采纳,获得10
9秒前
归尘应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
LBB完成签到,获得积分10
10秒前
Gryphon完成签到,获得积分10
24秒前
32秒前
uss完成签到,获得积分10
35秒前
flyinthesky完成签到,获得积分10
40秒前
莫名是个小疯子给李孟林的求助进行了留言
55秒前
张晓祁完成签到,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
1分钟前
vvvv完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
zeee完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得30
2分钟前
2分钟前
球球发布了新的文献求助10
2分钟前
球球完成签到,获得积分10
2分钟前
orixero应助ccccx采纳,获得30
2分钟前
苏梗完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ccccx发布了新的文献求助30
2分钟前
3分钟前
3分钟前
DYKNGIVDFY发布了新的文献求助10
3分钟前
Yantuobio发布了新的文献求助10
3分钟前
ccccx完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077449
求助须知:如何正确求助?哪些是违规求助? 4296510
关于积分的说明 13387106
捐赠科研通 4118965
什么是DOI,文献DOI怎么找? 2255614
邀请新用户注册赠送积分活动 1260024
关于科研通互助平台的介绍 1193332