已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic Background Filtering for Cooperative Perception Using Roadside LiDAR

计算机科学 帧(网络) 计算机视觉 人工智能 激光雷达 GSM演进的增强数据速率 滤波器(信号处理) 特征提取 模式识别(心理学) 遥感 电信 地质学
作者
Jianqi Liu,Jianguo Zhao,Junfeng Guo,Caifeng Zou,Xiuwen Yin,Xiaochun Cheng,Fazlullah Khan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6964-6977
标识
DOI:10.1109/tits.2023.3342178
摘要

The vehicle-road cooperative perception needs high accuracy and real-time automatic background filtering to separate background objects from foreground objects in complex traffic scenes. Reducing the influence of foreground objects to improve accuracy, and introducing a new framework to improve real-time performance are two main challenges in automatic background filtering. This paper proposes an Automatic Background Filtering method with innovative Frame Selection and Background Matrix Extraction modules (ABF-FSBME) to address these challenges. Firstly, a new space division method with equal hitting probability is proposed to divide the 3D point cloud formed by roadside Light Detection and Ranging (LiDAR), which can reduce the influence of slight LiDAR vibrations. Secondly, the terminal-edge-cloud framework is introduced to balance delay-constrained tasks and computation-intensive tasks in automatic background filtering. Thirdly, a variance-based frame selection strategy with a sliding window mechanism is proposed to select candidate frames with fewer foreground objects. This strategy can reduce the influence of foreground objects in a coarse-grained way. Meanwhile, a new background matrix extraction method is proposed to construct the background matrix. This method can further reduce the influence of foreground objects in a fine-grained way. Finally, based on the extracted background matrix from a cloud server, the edge server can filter the raw frame in real-time. The experimental results show that the proposed ABF-FSBME method has better accuracy than other methods in error rate and integrity rate. Besides, the proposed ABF-FSBME can complete fame filtering within 10ms, and has almost no network delay, so it can satisfy the real-time requirement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
谨慎颜演完成签到 ,获得积分10
3秒前
俭朴幻枫发布了新的文献求助10
4秒前
魔幻安南完成签到 ,获得积分10
5秒前
8秒前
lllxx47完成签到,获得积分10
9秒前
10秒前
吃吃发布了新的文献求助10
11秒前
wendinfgmei应助万骛采纳,获得10
13秒前
TaoJ应助周浩宇采纳,获得10
15秒前
17秒前
Sunziy完成签到,获得积分10
19秒前
春天的粥完成签到 ,获得积分10
21秒前
吃吃完成签到 ,获得积分10
25秒前
心随以动完成签到 ,获得积分10
26秒前
迷路的芝麻完成签到 ,获得积分10
32秒前
周周粥完成签到 ,获得积分10
32秒前
砰砰完成签到 ,获得积分10
32秒前
小洁完成签到 ,获得积分10
33秒前
子翱完成签到 ,获得积分10
34秒前
38秒前
柚子茶茶茶完成签到,获得积分10
40秒前
hhhhh完成签到 ,获得积分10
42秒前
沉默的觅海完成签到 ,获得积分10
42秒前
修辛完成签到 ,获得积分10
44秒前
颢懿完成签到 ,获得积分10
44秒前
44秒前
言辞完成签到,获得积分10
45秒前
Cc完成签到 ,获得积分10
45秒前
46秒前
50秒前
无花果应助zrm采纳,获得30
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
正直的飞瑶完成签到,获得积分10
1分钟前
xzy998应助正直的飞瑶采纳,获得10
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367265
关于积分的说明 10444742
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698062
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848