A real-time detection system for multiscale surface defects of 3D printed ceramic parts based on deep learning

计算机科学 软件 工作流程 陶瓷 领域(数学) 故障检测与隔离 深度学习 人工智能 材料科学 执行机构 数学 数据库 复合材料 程序设计语言 纯数学
作者
Wei Chen,Bin Zou,GongXian Yang,Qinbing Zheng,Ting Lei,Chuanzhen Huang,Jikai Liu,Lei Li
出处
期刊:Ceramics International [Elsevier BV]
卷期号:50 (8): 13101-13112 被引量:6
标识
DOI:10.1016/j.ceramint.2024.01.220
摘要

3D printed ceramic parts often have defects due to their inherent brittleness. These defects are of various scale sizes. Detecting these defects, especially with multiple sizes, is a challenging task in the field of detection. Furthermore, there is a lack of surface defect real-time detection systems suitable for industrial applications in this field. Based on this, this paper makes two contributions: the design and development of a real-time defect detection system, and the proposal of a multiscale defect detection method for 3D printed ceramic surfaces within this system. Firstly, the paper establishes the overall structure of the real-time detection system for surface defects on 3D printed ceramic components, and describes the hardware and software components of the system. On this basis, a dataset of ceramic surface defect images is collected and constructed. Then, experimental analyses point out the shortcomings of the You Only Look Once version-5 (YOLOv5) model for multiscale defect detection. To address the shortcomings, the YOLOv5 model is optimized from three aspects, resulting in the Deep separable convolution + residual network-SKNetwork-Efficient Channel Attention Network-YOLOv5 (DepRes-SK-ECA-YOLOv5) model for multiscale defect detection. This model improves the ability to extract and fuse features of defects at different scales. The experimental results show that the DepRes-SK-ECA-YOLOv5 model can achieve 93.5 %, 91.6 %, 94.3 %, and 0.198 s for Precision, Recall, mAP, and Speed for the test set, respectively. Finally, the paper designs the workflow for the system software. The system hardware and system software are integrated to form a real-time detection system. The performance of the detection system is verified through experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清水胖子发布了新的文献求助10
2秒前
李健的小迷弟应助青雉采纳,获得10
2秒前
宋德宇发布了新的文献求助20
3秒前
3秒前
鳗鱼灵安完成签到,获得积分10
6秒前
JamesPei应助清水胖子采纳,获得10
9秒前
11秒前
13秒前
Lucas应助浅暖采纳,获得10
13秒前
希望天下0贩的0应助lewis_xl采纳,获得10
14秒前
淡定井完成签到 ,获得积分10
18秒前
我是老大应助nnnn采纳,获得10
21秒前
23秒前
bkagyin应助蔡继海采纳,获得10
25秒前
26秒前
Voskov发布了新的文献求助10
28秒前
HZY发布了新的文献求助10
30秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
李爱国应助科研通管家采纳,获得10
33秒前
Leif应助科研通管家采纳,获得10
33秒前
蔡继海发布了新的文献求助10
36秒前
40秒前
44秒前
天天好心覃完成签到 ,获得积分10
44秒前
飘飘完成签到 ,获得积分10
44秒前
sfsdfs发布了新的文献求助10
45秒前
Johnson完成签到 ,获得积分10
47秒前
迅速的鹤完成签到,获得积分10
48秒前
搜集达人应助sfsdfs采纳,获得10
50秒前
淡淡冬瓜完成签到,获得积分10
51秒前
思源应助如意的冰双采纳,获得10
51秒前
安详的惜梦应助秀丽笑容采纳,获得10
57秒前
积极废物完成签到 ,获得积分10
58秒前
研友_VZG7GZ应助ash采纳,获得10
58秒前
无花果应助Cuz采纳,获得10
59秒前
1分钟前
jiajia完成签到,获得积分10
1分钟前
圈儿完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549