Ortho-NeRF: generating a true digital orthophoto map using the neural radiance field from unmanned aerial vehicle images

正射影像 光辉 领域(数学) 人工智能 计算机视觉 计算机科学 遥感 计算机图形学(图像) 地质学 数学 纯数学
作者
Shihan Chen,Qingsong Yan,Yingjie Qu,Wang Gao,Junxing Yang,Fei Deng
出处
期刊:Geo-spatial Information Science [Taylor & Francis]
卷期号:: 1-20
标识
DOI:10.1080/10095020.2023.2296014
摘要

True Digital Orthophoto Maps (TDOMs) have high geometric accuracy and rich image characteristics, making them essential geographic data for national economic and social development. Complex terrain and artificial structures, automatic distortion elimination and occluded area recovery in TDOM generation pose significant challenges. Hence, the need for further improvements in both mapping accuracy and automation is highlighted. In this paper, we present an approach for generating a TDOM based on a Neural Radiance Field (NeRF) without utilizing prior three-dimensional geometry information called an Ortho Neural Radiance Field (Ortho-NeRF). The Ortho-NeRF divides a large-scale scene into small tiles, implicitly reconstructing each tile by selecting pixels on posed images, and individually generate TDOMs of all tiles using a true-ortho-volume rendering before mosaicking. Additionally, the Ortho-NeRF uses a strategy to skip empty spaces and adaptively set the spatial resolution of a voxel grid, improving the generated TDOM quality with fewer computational resources. Many experiments showed that our approach outperforms ContextCapture, Metashape, Pix4DMapper, and Map2DFusion, especially in challenging areas. Owing to its global consistency and continuous nature, Ortho-NeRF was able to effectively reconstruct the geometry information and details, generating TDOMs without distortion or misalignment. Eight ground control points were randomly selected to evaluate the geometric accuracy of the TDOMs, with an average median error of 0.267 m. The length between two points on a plane was also measured for quantitative evaluation, with a mean absolute error of 0.08 m and a mean relative error of 0.14%. Compared with the NeRF efficiency, that of the Ortho-NeRF increased 104 times in training and about 1000 times in rendering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助动听的夏天采纳,获得10
刚刚
CuteG完成签到 ,获得积分10
刚刚
霸气大米完成签到 ,获得积分10
1秒前
kk完成签到,获得积分10
2秒前
冷艳的小懒虫完成签到 ,获得积分10
2秒前
小唐完成签到,获得积分10
3秒前
sparks完成签到,获得积分10
4秒前
123发布了新的文献求助10
8秒前
bkagyin应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
orixero应助科研通管家采纳,获得10
10秒前
子车茗应助科研通管家采纳,获得20
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
xzn1123应助科研通管家采纳,获得20
11秒前
heavenhorse应助Zhengkeke采纳,获得30
12秒前
俏皮的鼠标完成签到,获得积分10
12秒前
非洲大象完成签到,获得积分10
15秒前
18秒前
lonelymusic完成签到,获得积分10
18秒前
22秒前
粥粥完成签到,获得积分10
24秒前
26秒前
王振有发布了新的文献求助10
27秒前
29秒前
29秒前
刘刘刘完成签到,获得积分10
30秒前
sh完成签到,获得积分10
31秒前
莫誓发布了新的文献求助10
35秒前
你好完成签到 ,获得积分0
36秒前
sunhx发布了新的文献求助10
36秒前
36秒前
iiiid发布了新的文献求助10
38秒前
里维斯完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872