OTRN-DCN: An optimized transformer-based residual network with deep convolutional network for action recognition and multi-object tracking of adaptive segmentation using soccer sports video

计算机科学 人工智能 视频跟踪 计算机视觉 分割 对象(语法) 杂乱 雷达 电信
作者
K. Kausalya,S Kanaga Suba Raja
出处
标识
DOI:10.1142/s0219691323500340
摘要

In today’s era, video analysis is immensely involved in recognizing the sport-related movement that has become a significant part of human’s life. The intent of this approach is to know about the player’s activities with prior information of tracking objects. It also analyzes the player potential or capacity to lead the winning team. When the player frequently changes their location, object tracking and action recognition will become a quite challenging task. Over the game, various athletes or different objects are considered to assist the system to easily recognize the respective actions of the player. Most of the previous models have been implemented, yet, it faces such consequences to provide promising performance. To meet the pre-requisite, a new multi-athlete tracking model for action recognition in soccer sports is designed with deep learning approaches. Initially, the multi-object tracking video is offered as the input to pre-processing phase. Here, occlusion and background clutter removal and contrast enhancement techniques are utilized to perform pre-processing in the videos. Then, the pre-processed video is offered to the multi-object tracking phase, where the jersey number is observed during multi-object tracking to avoid the identity switch problem. Then, effective multi-object tracking is performed by adaptive YOLOv5. The parameters presented in the improved adaptive YOLOv5 are tuned by proposing a new algorithm as the Random-based Cheetah Red Deer Algorithm (RCRDA). Next, in the action recognition phase, the tracked object from the video is taken based on the Region of Interest (ROI) that is subjected to an action recognition model named Optimized Transformer-based Residual Network with Deep Convolutional Network (OTRN-DCN). At first, ROI is offered as the input to TRN for attaining the feature vectors. Then, the optimal weighted vector extraction is performed, where the weight is tuned by the developed RCRDA. Finally, the attained optimally weighted vectors are given to the DCN phase for attaining recognized action as output. Hence, the developed multi-object tracking and action recognition model will secure an improved recognition rate than the traditional framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助甜甜圈采纳,获得10
1秒前
ozzz发布了新的文献求助10
1秒前
JC完成签到,获得积分10
2秒前
科研通AI5应助vnb采纳,获得10
3秒前
tanglu发布了新的文献求助10
4秒前
顾矜应助胡图图采纳,获得10
4秒前
传奇3应助畅快厉采纳,获得10
4秒前
lily完成签到,获得积分10
5秒前
5秒前
公孙玲珑发布了新的文献求助10
7秒前
机智的誉完成签到,获得积分10
7秒前
徐淇淇完成签到 ,获得积分10
8秒前
9秒前
10秒前
眼药水发布了新的文献求助20
10秒前
甜甜圈完成签到,获得积分10
10秒前
欢呼的茗茗完成签到 ,获得积分10
10秒前
11秒前
幽默鹭洋发布了新的文献求助10
12秒前
12秒前
夏天的风完成签到,获得积分10
12秒前
13秒前
甜甜圈发布了新的文献求助10
14秒前
15秒前
畅快厉完成签到,获得积分10
15秒前
16秒前
17秒前
wzy5508完成签到 ,获得积分10
17秒前
17秒前
白玉元宵完成签到,获得积分10
18秒前
18秒前
轻松的贞发布了新的文献求助10
19秒前
都是发布了新的文献求助10
20秒前
sfy66666发布了新的文献求助10
21秒前
gcc发布了新的文献求助10
21秒前
zhy发布了新的文献求助10
21秒前
畅快厉发布了新的文献求助10
22秒前
高大以南完成签到,获得积分10
22秒前
CipherSage应助科研通管家采纳,获得30
22秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848737
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568043
捐赠科研通 3112141
什么是DOI,文献DOI怎么找? 1715101
邀请新用户注册赠送积分活动 825560
科研通“疑难数据库(出版商)”最低求助积分说明 775647