Molecular sharing and molecular-specific representations for multimodal molecular property prediction

计算机科学 财产(哲学) 分子图 数量结构-活动关系 代表(政治) 可解释性 分子描述符 虚拟筛选 推论 可视化 理论计算机科学 机器学习 数据挖掘 人工智能 图形 分子动力学 化学 计算化学 哲学 认识论 政治 政治学 法学
作者
Xuecong Tian,Sizhe Zhang,Ying Su,Huang Wan-hua,Yongzheng Zhang,Xuan Ma,Keao Li,Xiaoyi Lv,Chen Chen,Cheng Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:163: 111898-111898 被引量:3
标识
DOI:10.1016/j.asoc.2024.111898
摘要

Molecular property prediction plays a crucial role in drug discovery and development. However, traditional experimental measurements and Quantitative Structure-Activity Relationship (QSAR) models are often expensive, time-consuming, and data acquisition is challenging. To overcome these limitations and challenges, this study innovatively proposes a fusion molecular property prediction method called molecular property prediction model (MSSP) to address the non-uniqueness of Simplified Molecular Input Line Entry System (SMILES) string representation and the difficulty of capturing global information in molecular graphs. This method extracts multiple fingerprint features and utilizes graph neural network encoding to map different modalities of molecules into molecular sharing and molecular-specific representation spaces, achieving modal alignment and fusion of molecules by combining molecular invariance and representation specificity. To enhance the interpretability and visualization capabilities of the model, graph attention mechanisms are introduced, enabling the identification and inference of important chemical fragments within molecules. Experimental results on publicly available cell line phenotype and kinase activity datasets demonstrate that MSSP outperforms the current state-of-the-art methods in molecular property prediction. Additionally, MSSP exhibits strong competitiveness across nine benchmark molecular property prediction datasets. Furthermore, in the task of predicting SRC kinase data properties, this study successfully screens promising therapeutic compounds from compound libraries by validating the predictions of the MSSP model and combining them with traditional methods such as molecular docking and molecular dynamics simulations. Multiple potential Lyn inhibitors have been discovered through this approach. The application of MSSP model is helpful to discover new molecules with new drug properties or functions, accelerate the process of drug discovery, save time and resources, and provide important guidance for drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉肉发布了新的文献求助10
1秒前
111发布了新的文献求助10
1秒前
骏驰天下完成签到,获得积分10
3秒前
3秒前
3秒前
kkkche发布了新的文献求助10
3秒前
看你个完成签到,获得积分10
6秒前
搞怪薯片发布了新的文献求助10
6秒前
123完成签到 ,获得积分10
7秒前
7秒前
21完成签到 ,获得积分10
7秒前
小可爱521发布了新的文献求助30
8秒前
13秒前
13秒前
13秒前
13秒前
小鸣完成签到 ,获得积分10
14秒前
oneone完成签到,获得积分20
15秒前
王小丫完成签到 ,获得积分10
16秒前
xue完成签到 ,获得积分10
16秒前
xiaozhao完成签到,获得积分10
17秒前
cao发布了新的文献求助10
19秒前
香翔想相完成签到,获得积分10
20秒前
科研通AI5应助王嵩嵩采纳,获得10
23秒前
科研通AI5应助Herrily采纳,获得30
24秒前
25秒前
森林木发布了新的文献求助20
25秒前
歌尔德蒙发布了新的文献求助10
29秒前
30秒前
英俊的铭应助英勇的灯泡采纳,获得10
31秒前
34秒前
yy发布了新的文献求助10
34秒前
34秒前
嗦了一碗粉完成签到 ,获得积分10
36秒前
Jasper应助Ruiruirui采纳,获得10
38秒前
小蘑菇应助111采纳,获得10
38秒前
39秒前
39秒前
springlover完成签到,获得积分0
40秒前
拾柒完成签到,获得积分10
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4147557
求助须知:如何正确求助?哪些是违规求助? 3684287
关于积分的说明 11640433
捐赠科研通 3378145
什么是DOI,文献DOI怎么找? 1853949
邀请新用户注册赠送积分活动 916347
科研通“疑难数据库(出版商)”最低求助积分说明 830251