价值(数学)
特征向量
数学
拉普拉斯算子
GSM演进的增强数据速率
公制(单位)
统计
数学分析
计算机科学
物理
人工智能
运营管理
量子力学
经济
作者
Siyang Jiang,Jun-an Lu,Jin Zhou,Qinrui Dai
出处
期刊:Physical review
[American Physical Society]
日期:2024-05-01
卷期号:109 (5)
被引量:3
标识
DOI:10.1103/physreve.109.054301
摘要
Fiedler value, as the minimal real part of (or the minimal) nonzero Laplacian eigenvalue, garners significant attention as a metric for evaluating network topology and its dynamics. In this paper, we address the quantification relation between Fiedler value and each edge in a directed complex network, considering undirected networks as a special case. We propose an approach to measure the dynamical contribution value of each edge. Interestingly, these contribution values can be both positive and negative, which are determined by the left and right Fiedler vectors. Further, we show that the cumulated dynamical contribution value of all edges is exactly the Fiedler value. This provides a promising angle on the Fiedler value in terms of dynamics and network structure. Therefore, the percentage of contribution of each edge to the Fiedler value is quantified. Numerical results reveal that network dynamics is significantly influenced by a small fraction of edges, say, one single directed edge contributes to over 90% of the Fiedler value in the Cat Cerebral Cortex network.
科研通智能强力驱动
Strongly Powered by AbleSci AI