材料科学
热失控
热稳定性
金属
电解质
锂(药物)
硫化物
电化学
快离子导体
阳极
化学稳定性
化学工程
物理化学
热力学
冶金
电池(电)
电极
化学
物理
工程类
医学
功率(物理)
内分泌学
作者
Jitong Yan,Jingming Yao,Jun Zhao,Zhixuan Yu,Zhangran Ye,Longchen Zhang,Zaifa Wang,Xuedong Zhang,Zhaoyu Rong,Dejie Kong,Jun Sun,Wen Li,Jing Wang,Dawei Gao,Jianyu Huang,Yongfu Tang
标识
DOI:10.1002/adfm.202421918
摘要
Abstract Understanding the interfacial reaction mechanism between sulfide solid‐state electrolytes (SSEs) and metallic lithium (Li) under thermal runaway is of great significance in improving the safety of all‐solid‐state Li metal batteries (ASLMBs). Herein, multiscale methods including in situ optical microscopy‐thermal infrared imaging combination technique, cryogenic electron microscopy, thermodynamic simulation, and ab initio molecular dynamics methods are utilized to investigate the thermal chemical stability of sulfide SSEs Li 10 GeP 2 S 12 (LGPS) and Li 6 PS 5 Cl (LPSCl) against metallic Li under high temperatures. The results indicate that drastic thermal runaway happened between LGPS and metallic Li at 300 °C due to the continuous Li‐Germanium alloying reaction. In contrast, LPSCl maintains stability against metallic Li up to 400 °C, which is attributed to the formation of Li 2 S‐LiP‐Li 3 P‐LiCl stable interphases in the interfacial reaction between LPSCl and metallic Li. The electrical insulation interphase prevents the further reaction between LPSCl and metallic Li via kinetically decreasing the chemical potential of metallic Li to be within the electrochemical window of LPSCl. This work demonstrates the critical role of stable electrically insulated interphases between metallic Li anode and SSEs in improving the safety of ASLMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI