作者
Zhen Wu,Runqing Ye,Jue Huang,Xiaolin Fu,Yao Chen
摘要
Landslide susceptibility evaluation is an indispensable part of disaster prevention and mitigation work. Selecting effective evaluation methods and models for landslide susceptibility assessment is of significant importance. This study focuses on selected areas in Yunyang County, Chongqing City. By interpreting high-resolution satellite remote sensing images from before and after heavy rainfall on 31 August 2014, the distribution of rainfall-induced accumulation landslides was obtained. To evaluate the susceptibility of accumulation landslides, we have equated evaluation factors to accumulation distribution prediction factors. Eight evaluation factors were extracted using multi-source data, including lithology, elevation, slope, remote sensing image texture features, and the normalized difference vegetation index (NDVI). Various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), and BP Neural Network models, were employed to assess the susceptibility of rainfall-induced accumulation landslides in the study area. Subsequently, the accuracy of the evaluation models was compared and verified using the Receiver Operating Characteristic (ROC) curve, and the evaluation results were analyzed. Finally, the developed Random Forest model was applied to Gongping Town in Fengjie County to verify its applicability in other regions. The findings indicate that the complex geological conditions and the unique tectonic erosion landform patterns in the northeastern region of Chongqing not only make this area a center of heavy rainfall but also lead to frequent and recurrent rainfall-induced landslides. The Random Forest model effectively reflects the development characteristics of accumulation landslides in the study area. High and very high susceptibility zones are concentrated in the northern and central regions of the study area, while low and moderate susceptibility zones predominantly occupy the mountainous and riverside areas. Landslide susceptibility mapping in the study area shows that the Random Forest model yields reasonably graded results. Elevation, remote sensing image texture features, and lithology are highly significant factors in the evaluation system, indicating that the development factors of slope geological disasters in the study area are mainly related to topography, geomorphology, and lithology. The landslide susceptibility evaluation results in Gongping Town, Fengjie County, validate the applicability of the Random Forest model developed in this study to other regions.