Deep learning–based clustering for endotyping and post-arthroplasty response classification using knee osteoarthritis multiomic data

医学 骨关节炎 聚类分析 关节置换术 人工智能 物理疗法 物理医学与康复 外科 病理 计算机科学 替代医学
作者
Jason S. Rockel,Divya Sharma,Osvaldo Espin‐Garcia,Katrina Hueniken,Amit Sandhu,Chiara Pastrello,Kala Sundararajan,Pratibha Potla,Noah Fine,Starlee S. Lively,K. Perry,Nizar N. Mahomed,Khalid Syed,Igor Jurišica,Anthony V. Perruccio,Y. Raja Rampersaud,Rajiv Gandhi,Mohit Kapoor
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
标识
DOI:10.1016/j.ard.2025.01.012
摘要

Primary knee osteoarthritis (KOA) is a heterogeneous disease with clinical and molecular contributors. Biofluids contain microRNAs and metabolites that can be measured by omic technologies. Multimodal deep learning is adept at uncovering complex relationships within multidomain data. We developed a novel multimodal deep learning framework for clustering of multiomic data from 3 subject-matched biofluids to identify distinct KOA endotypes and classify 1-year post-total knee arthroplasty (TKA) pain/function responses. In 414 patients with KOA, subject-matched plasma, synovial fluid, and urine were analysed using microRNA sequencing or metabolomics. Integrating 4 high-dimensional datasets comprising metabolites from plasma and microRNAs from plasma, synovial fluid, or urine, a multimodal deep learning variational autoencoder architecture with K-means clustering was employed. Features influencing cluster assignment were identified and pathway analyses conducted. An integrative machine learning framework combining 4 molecular domains and a clinical domain was then used to classify Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain/function responses after TKA within each cluster. Multimodal deep learning-based clustering of subjects across 4 domains yielded 3 distinct patient clusters. Feature signatures comprising microRNAs and metabolites across biofluids included 30, 16, and 24 features associated with clusters 1 to 3, respectively. Pathway analyses revealed distinct pathways associated with each cluster. Integration of 4 multiomic domains along with clinical data improved response classification performance, surpassing individual domain classifications alone. We developed a multimodal deep learning-based clustering model capable of integrating complex multifluid, multiomic data to assist in uncovering biologically distinct patient endotypes and enhance outcome classifications to TKA surgery, which may aid in future precision medicine approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
冷傲的迎南完成签到 ,获得积分10
6秒前
9秒前
11秒前
Cecilia发布了新的文献求助10
12秒前
13秒前
AAA咸鱼本鱼完成签到,获得积分20
14秒前
唐咩咩咩发布了新的文献求助10
16秒前
矢思然发布了新的文献求助10
16秒前
乐乐应助李李李李李采纳,获得10
16秒前
S1219关注了科研通微信公众号
19秒前
蜻蜓发布了新的文献求助10
20秒前
雪原白鹿发布了新的文献求助10
21秒前
不远完成签到,获得积分10
22秒前
26秒前
唐咩咩咩完成签到,获得积分10
27秒前
32秒前
33秒前
丁莞完成签到,获得积分10
33秒前
34秒前
S1219发布了新的文献求助10
37秒前
ChaoyongWu完成签到 ,获得积分10
38秒前
mmy完成签到 ,获得积分10
39秒前
41秒前
小黄完成签到,获得积分10
42秒前
多情的舞蹈完成签到,获得积分10
44秒前
45秒前
英姑应助mariawang采纳,获得10
46秒前
蜻蜓完成签到,获得积分10
48秒前
48秒前
张张完成签到,获得积分10
50秒前
CipherSage应助科研通管家采纳,获得10
51秒前
领导范儿应助科研通管家采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
上官若男应助科研通管家采纳,获得10
51秒前
爆米花应助科研通管家采纳,获得30
51秒前
bkagyin应助科研通管家采纳,获得10
51秒前
桐桐应助科研通管家采纳,获得10
51秒前
Hello应助科研通管家采纳,获得10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322019
关于积分的说明 10208579
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878