亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Feature-Aware Approach to Acupoint Compatibility Prediction Using Residual Graph Attention Networks and Matrix Factorization

计算机科学 相容性(地球化学) 矩阵分解 人工智能 残余物 数据挖掘 机器学习 图形 理论计算机科学 算法 特征向量 工程类 物理 量子力学 化学工程
作者
Ruiling Li,Ying Pan,Song Wu,Li Ma,Limei Peng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3525040
摘要

Compatibility among acupoints is a fundamental principle in acupuncture treatment within traditional Chinese medicine, playing a vital role in enhancing the effectiveness and scope of therapeutic interventions. With the increasing availability of acupuncture-related data, link prediction offers a data-driven approach that facilitates the evidence-based exploration and validation of acupoint compatibilities. However, existing link prediction methods often focus on mapping acupoints and their compatibility relationships into lower-dimensional spaces. These approaches can overlook essential acupoint features and make the predictions susceptible to noise interference. To address these challenges, we propose a novel acupoint compatibility prediction model based on a Feature-Aware Residual Graph Attention Network and Matrix Factorization (FRGATMF). Our model introduces a feature-aware connectivity fusion strategy that integrates acupoint attributes with structural information to enrich acupoint representations. Following this, a deep non-negative matrix factorization approach is employed to construct a denoised feature matrix. This matrix is processed through a residual graph attention network to derive comprehensive and effective node embeddings, which are crucial for accurate link prediction. Experimental results on the acupuncture dataset, along with three public datasets, demonstrate that FRGATMF significantly outperforms seven existing comparison models across various evaluation metrics. Additionally, link prediction can identify previously unconsidered or undocumented acupoint combinations that may offer better therapeutic results, thus expanding the range of treatment options and highlighting its potential in improving the prediction of acupoint compatibility relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scm完成签到,获得积分10
21秒前
38秒前
iShine完成签到 ,获得积分10
41秒前
real发布了新的文献求助10
45秒前
NexusExplorer应助real采纳,获得10
50秒前
光合作用完成签到,获得积分10
57秒前
欢欢完成签到,获得积分10
1分钟前
MchemG应助科研通管家采纳,获得20
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
牟白容完成签到,获得积分20
1分钟前
2分钟前
小小怪发布了新的文献求助10
2分钟前
3分钟前
zys发布了新的文献求助10
3分钟前
3分钟前
herococa完成签到,获得积分10
4分钟前
666完成签到,获得积分10
4分钟前
5分钟前
sino-ft完成签到,获得积分10
5分钟前
sino-ft发布了新的文献求助30
5分钟前
WWW完成签到 ,获得积分10
5分钟前
5分钟前
小小怪发布了新的文献求助30
5分钟前
666发布了新的文献求助10
6分钟前
6分钟前
我就想看看文献完成签到 ,获得积分10
7分钟前
无花果应助科研通管家采纳,获得10
7分钟前
8分钟前
hjyylab完成签到 ,获得积分10
8分钟前
8分钟前
real发布了新的文献求助10
8分钟前
假面绅士完成签到,获得积分10
9分钟前
蔚欢完成签到 ,获得积分10
10分钟前
Demi_Ming完成签到,获得积分10
10分钟前
lzy发布了新的文献求助30
10分钟前
11分钟前
科目三应助卜天亦采纳,获得10
11分钟前
卜天亦完成签到,获得积分10
11分钟前
斯文败类应助real采纳,获得10
11分钟前
11分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819939
求助须知:如何正确求助?哪些是违规求助? 3362797
关于积分的说明 10418841
捐赠科研通 3081184
什么是DOI,文献DOI怎么找? 1694991
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768522