已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LcProt: Proteomics‐based identification of plasma biomarkers for lung cancer multievent, a multicentre study

医学 生物标志物 肺癌 Lasso(编程语言) 肿瘤科 前瞻性队列研究 阶段(地层学) 内科学 队列 接收机工作特性 计算机科学 生物 生物化学 古生物学 万维网
作者
Hengrui Liang,Runchen Wang,Ran Cheng,Zhiming Ye,Na Zhao,Xiaohong Zhao,Ying Huang,Zhanpeng Jiang,Wang‐Zhong Li,Jianqi Zheng,Hongsheng Deng,Yu Jiang,Yuechun Lin,Yan Yun,Lei Song,Jie Li,Xin Xu,Wenhua Liang,Jun Liu,Jianxing He
出处
期刊:Clinical and translational medicine [Wiley]
卷期号:15 (1): e70160-e70160 被引量:7
标识
DOI:10.1002/ctm2.70160
摘要

ABSTRACT Background Plasma protein has gained prominence in the non‐invasive predicting of lung cancer. We utilised Zeolite Zotero NaY‐based plasma proteomics to investigate its potential for multiple event predicting, including lung cancer diagnosis (task #1), lymph node metastasis detection (task #2) and tumour‒node‒metastasis (TNM) staging (task #3). Methods A total of 4703 plasma proteins were quantified from 241 participants based on a prospective cohort of 2757 participants. An additional 46 participants from external prospective cohort of 735 participants were used for validation. Feature selection was performed using differential expressed protein analysis, area under curve (AUC) evaluation and least absolute shrinkage and selection operator (LASSO) regression. Random forest was used for multitask model construction based on the key proteins. Feature importance was interpreted using Shapley additive explanations (SHAP) algorithm. Results For task #1, 10 proteins panel showed an AUC of .87 (.77‒.97) in the external validation. After integrating clinical factors, a significant increase diagnostic accuracy was observed with AUC of .91 (.85‒.98). For task #2, nine proteins panel achieved an AUC of .88 (.80‒.96), integration model showed an increase diagnostic accuracy with AUC of .90 (.85‒.97). For task #3, 10 proteins panel showed an AUC of .88 (.74‒.96) for stage I, .92 (.84‒.97) for stage II, .88 (.76‒.96) for stage III and .99 (.98‒.99) for stage IV in the integration model. Conclusions This study comprehensively profiled the NaY‐based plasma proteome biomarker, laying the foundation for a high‐performance blood test for predicting multiple events in lung cancer. Key points Our study developed an innovative nanomaterial, Zeolite NaY, which addressed the masking effect and improved the depth of the proteome. The performance of NaY‐based plasma proteomics as a preclinical diagnostic tool was validated through both internal and external cohort. Furthermore, we explored the different patterns of plasma protein changes during the progression of lung cancer and used the explanations method to elucidate the roles of proteins in the multitask predictive model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研同路人完成签到,获得积分0
刚刚
鳗鱼紫萱完成签到,获得积分10
5秒前
七七完成签到 ,获得积分10
8秒前
Monster完成签到,获得积分10
8秒前
9秒前
行悟完成签到 ,获得积分10
11秒前
11秒前
路灯下的小伙完成签到,获得积分10
12秒前
12秒前
12秒前
15秒前
StoneT发布了新的文献求助10
16秒前
小象完成签到,获得积分10
18秒前
科研通AI6应助by采纳,获得10
18秒前
llll发布了新的文献求助10
18秒前
WXKennyS完成签到,获得积分10
20秒前
田様应助StoneT采纳,获得10
24秒前
汤米bb完成签到,获得积分10
24秒前
孤独蘑菇完成签到 ,获得积分10
28秒前
斯文败类应助科研通管家采纳,获得10
29秒前
29秒前
FashionBoy应助ITACHI采纳,获得10
30秒前
充电宝应助王威采纳,获得30
33秒前
lskjdflass发布了新的文献求助10
35秒前
35秒前
枫丶完成签到 ,获得积分10
37秒前
Owen应助天棱采纳,获得10
37秒前
41秒前
42秒前
余莉莎完成签到,获得积分20
43秒前
lskjdflass完成签到,获得积分10
47秒前
王威发布了新的文献求助30
48秒前
48秒前
48秒前
困的晕福福完成签到 ,获得积分10
50秒前
Perry完成签到,获得积分0
50秒前
乃心之凯凯关注了科研通微信公众号
50秒前
量子星尘发布了新的文献求助10
51秒前
by发布了新的文献求助10
54秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469887
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337540
捐赠科研通 4499791
什么是DOI,文献DOI怎么找? 2465313
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270