Edge deep learning in computer vision and medical diagnostics: a comprehensive survey

深度学习 计算机科学 人工智能 GSM演进的增强数据速率 边缘设备 边缘计算 深层神经网络 数据科学 机器学习 人工神经网络 人机交互 云计算 操作系统
作者
Yiwen Xu,Tariq Khan,Yang Song,Erik Meijering
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:58 (3) 被引量:8
标识
DOI:10.1007/s10462-024-11033-5
摘要

Edge deep learning, a paradigm change reconciling edge computing and deep learning, facilitates real-time decision making attuned to environmental factors through the close integration of computational resources and data sources. Here we provide a comprehensive review of the current state of the art in edge deep learning, focusing on computer vision applications, in particular medical diagnostics. An overview of the foundational principles and technical advantages of edge deep learning is presented, emphasising the capacity of this technology to revolutionise a wide range of domains. Furthermore, we present a novel categorisation of edge hardware platforms based on performance and usage scenarios, facilitating platform selection and operational effectiveness. Following this, we dive into approaches to effectively implement deep neural networks on edge devices, encompassing methods such as lightweight design and model compression. Reviewing practical applications in the fields of computer vision in general and medical diagnostics in particular, we demonstrate the profound impact edge-deployed deep learning models can have in real-life situations. Finally, we provide an analysis of potential future directions and obstacles to the adoption of edge deep learning, with the intention to stimulate further investigations and advancements of intelligent edge deep learning solutions. This survey provides researchers and practitioners with a comprehensive reference shedding light on the critical role deep learning plays in the advancement of edge computing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助ARIA采纳,获得10
刚刚
科目三应助二十采纳,获得10
刚刚
辰昜发布了新的文献求助10
2秒前
科研通AI2S应助热情鹏笑采纳,获得10
2秒前
shiizii应助mini采纳,获得10
3秒前
曾经的采波完成签到 ,获得积分10
3秒前
俊秀的芫发布了新的文献求助10
3秒前
4秒前
奋斗的夜山完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
你是一个好人甲完成签到,获得积分20
7秒前
8秒前
田様应助Philadelphus采纳,获得10
8秒前
遢霧发布了新的文献求助10
9秒前
liii发布了新的文献求助10
10秒前
天上白玉京完成签到,获得积分10
10秒前
chen发布了新的文献求助10
11秒前
谦让碧菡发布了新的文献求助10
11秒前
12秒前
米玛吗发布了新的文献求助10
13秒前
asdfg发布了新的文献求助10
17秒前
17秒前
ARIA发布了新的文献求助10
17秒前
田様应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
19秒前
乐乐应助科研通管家采纳,获得30
19秒前
无私的芹应助科研通管家采纳,获得10
19秒前
19秒前
我是老大应助科研通管家采纳,获得10
20秒前
无私的芹应助科研通管家采纳,获得10
20秒前
20秒前
zhangyi完成签到,获得积分20
20秒前
大模型应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026947
求助须知:如何正确求助?哪些是违规求助? 3566469
关于积分的说明 11352000
捐赠科研通 3297576
什么是DOI,文献DOI怎么找? 1816057
邀请新用户注册赠送积分活动 890501
科研通“疑难数据库(出版商)”最低求助积分说明 813672