材料科学
相变存储器
电介质
焦耳加热
重置(财务)
光电子学
平面的
功率密度
相变材料
电极
纳米技术
相(物质)
功率(物理)
电流密度
电气工程
工程物理
相变
复合材料
计算机科学
工程类
化学
物理
量子力学
计算机图形学(图像)
图层(电子)
物理化学
有机化学
金融经济学
经济
作者
Namwook Hur,Yechan Kim,Beomsung Park,Sanghee Yoon,Seunghwan Kim,Dong‐Hyeok Lim,Hongsik Jeong,Yong-Jin Kwon,Joonki Suh
标识
DOI:10.1002/smtd.202401381
摘要
Abstract Recent advancements in phase‐change memory (PCM) technology have predominantly stemmed from material‐level designs, which have led to fast and durable device performances. However, there remains a pressing need to address the enormous energy consumption through device‐level electrothermal solutions. Thus, the concept of a 3D heater‐all‐around (HAA) PCM fabricated along the vertical nanoscale hole of dielectric/metal/dielectric stacks is proposed. The embedded thin metallic heater completely encircles the phase‐change material, so it promotes highly localized Joule heating with minimal loss. Hence, a low RESET current density of 6–8 MA cm −2 and operation energy of 150–200 pJ are achieved even for a sizable hole diameter of 300 nm. Beyond the conventional 2D scaling of the bottom electrode contact, it accordingly enhances ≈80% of operational energy efficiency compared to planar PCM with an identical contact area. In addition, reliable memory operations of ≈10 5 cycles and the 3‐bits‐per‐cell multilevel storage despite ultrathin (<10 nm) sidewall deposition of Ge 2 Sb 2 Te 5 are optimized. The proposed 3D‐scaled HAA‐PCM architecture holds promise as a universally applicable backbone for emerging phase‐change chalcogenides toward high‐density, ultralow‐power computing units.
科研通智能强力驱动
Strongly Powered by AbleSci AI