Optimizing depthwise separable convolution on DCU

可分离空间 卷积(计算机科学) 计算机科学 数学 人工智能 数学分析 人工神经网络
作者
Zheng Liu,Hao Meng,Weizhe Zhang,Gangzhao Lu,Xiaobin Tian,Siyu Yang,Min Xie,Jie Dai,Chengfu Yuan,Desheng Wang,Hongwei Yang
出处
期刊:CCF Transactions on High Performance Computing [Springer Science+Business Media]
标识
DOI:10.1007/s42514-024-00200-3
摘要

Abstract The integration of Large Language Models (LLMs) with Convolutional Neural Networks (CNNs) is significantly advancing the development of large models. However, the computational cost of large models is high, necessitating optimization for greater efficiency. One effective way to optimize the CNN is the use of depthwise separable convolution (DSC), which decouples spatial and channel convolutions to reduce the number of parameters and enhance efficiency. In this study, we focus on porting and optimizing DSC kernel functions from the GPU to the Deep Computing Unit (DCU), a computing accelerator developed in China. For depthwise convolution, we implement a row data reuse algorithm to minimize redundant data loading and memory access overhead. For pointwise convolution, we extend our dynamic tiling strategy to improve hardware utilization by balancing resource allocation among blocks and threads, and we enhance arithmetic intensity through a channel distribution algorithm. We implement depthwise and pointwise convolution kernel functions and integrate them into PyTorch as extension modules. Experiments demonstrate that our optimized kernel functions outperform the MIOpen library on the DCU, achieving up to a 3.59 $$\times$$ × speedup in depthwise convolution and up to a 3.54 $$\times$$ × speedup in pointwise convolution. These results highlight the effectiveness of our approach in leveraging the DCU’s architecture to accelerate deep learning operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
欣喜石头发布了新的文献求助10
1秒前
可爱绿草发布了新的文献求助10
2秒前
3秒前
吴路发布了新的文献求助10
4秒前
华仔应助小马过河采纳,获得10
4秒前
小蘑菇应助二十五采纳,获得10
5秒前
一一完成签到 ,获得积分10
6秒前
远方完成签到,获得积分10
6秒前
明理楷瑞发布了新的文献求助10
6秒前
hfh完成签到,获得积分10
8秒前
lujie应助你您采纳,获得30
9秒前
nihui完成签到 ,获得积分10
10秒前
jenningseastera应助百里盼夏采纳,获得10
10秒前
bkagyin应助cindy采纳,获得10
11秒前
12秒前
风至完成签到,获得积分10
13秒前
核桃酥应助less12323采纳,获得10
13秒前
13秒前
积极向上完成签到,获得积分10
13秒前
天真的冰蝶完成签到,获得积分10
13秒前
YAN完成签到 ,获得积分10
14秒前
ding应助haonanchen采纳,获得10
15秒前
16秒前
16秒前
落后的小松鼠完成签到,获得积分10
17秒前
笨笨念文完成签到 ,获得积分10
18秒前
welch完成签到,获得积分10
18秒前
20秒前
结实棉花糖完成签到,获得积分10
20秒前
飘逸星影完成签到,获得积分10
20秒前
22秒前
梨理栗完成签到,获得积分10
23秒前
Hello应助陈锦鲤采纳,获得10
23秒前
明理楷瑞完成签到,获得积分10
23秒前
欣喜石头完成签到,获得积分10
24秒前
BettyNie完成签到 ,获得积分10
25秒前
星辰大海应助虚拟的万恶采纳,获得50
26秒前
27秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799716
求助须知:如何正确求助?哪些是违规求助? 3345044
关于积分的说明 10323077
捐赠科研通 3061547
什么是DOI,文献DOI怎么找? 1680394
邀请新用户注册赠送积分活动 807069
科研通“疑难数据库(出版商)”最低求助积分说明 763462