Multi-objective time-cost-safety risk trade-off optimization for the construction scheduling problem

调度(生产过程) 计算机科学 取舍 风险分析(工程) 业务 运营管理 工程类 数学 统计
作者
Mehmet Yılmaz,Tayfun Dede
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-02-2024-0249
摘要

Purpose The purpose of this study is to enable the planning of construction projects with simultaneous consideration of time, cost and safety risks. It also aims to improve the decision-making process by evaluating the effectiveness of the Rao-2 algorithm in solving multi-objective time-cost-safety risk problems. In the end, this model is designed to support project managers in enhancing management approaches by addressing project challenges and constraints more efficiently. Design/methodology/approach In this study, the Rao-2 algorithm, along with Grey Wolf Optimization (GWO) and Whale Optimization algorithm (WOA), were improved using the crowding distance-based non-dominated sorting method. Rao-2 was first compared to GWO and WOA. Subsequently, it was compared with well-established algorithms in the literature, including genetic algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE). The C-metric, hypervolume and spread metrics were employed for performance measurement. The performance of the algorithms was evaluated on four case studies consisting of 11, 13, 18 and 25 activities. Findings The results revealed that Rao-2 performs better than other algorithms as the number of activities increases, when compared using the Hypervolume, Spread and C-metric measures. In terms of performance measures, the GWO algorithm outperformed Rao-2 in some evaluation metrics for the instance involving 11 activities. However, as the number of activities grew, the Rao-2 method consistently generated higher-quality Pareto fronts and outperformed GWO and WOA in all evaluation metrics. The solutions generated by Rao-2 were also superior to those obtained from GA, PSO and DE in all case studies, further demonstrating the capability of our framework to produce a wide range of optimal solutions with high diversity across different case studies. Originality/value This research demonstrates that Rao-2 not only improves solution quality when generating Pareto fronts but also achieves better results with fewer function evaluations compared to GA, PSO and DE. The algorithm's efficiency makes it particularly well-suited for optimizing time, cost and safety risks in large-scale construction projects, which in turn positions Rao-2 as a better choice for such projects by producing superior results compared to other algorithms. By providing high-quality solutions with reduced computational demands, Rao-2 offers a faster and more resource-efficient tool for decision-making, contributing to advancements in both the theory and practice of construction project management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smiling发布了新的文献求助10
刚刚
杨所谓完成签到,获得积分10
1秒前
1秒前
传奇3应助靓丽冬灵采纳,获得10
1秒前
香蕉觅云应助贺岚采纳,获得10
2秒前
learnerZ_2023完成签到,获得积分10
2秒前
学术刘亦菲完成签到,获得积分10
2秒前
2秒前
liurui发布了新的文献求助30
3秒前
miya完成签到,获得积分10
3秒前
上官若男应助儒雅凌香采纳,获得10
3秒前
4秒前
桐桐应助huangyi采纳,获得10
5秒前
无花果应助joy1234456采纳,获得10
5秒前
sxp1031发布了新的文献求助10
6秒前
喻嘟嘟完成签到,获得积分10
6秒前
7秒前
科研顺利完成签到 ,获得积分10
7秒前
赘婿应助LJ采纳,获得10
8秒前
9秒前
9秒前
大力的契完成签到,获得积分10
9秒前
星辰大海应助xxy采纳,获得10
10秒前
10秒前
王甜甜发布了新的文献求助10
10秒前
10秒前
独孤幻月96完成签到,获得积分10
11秒前
小黑不黑完成签到,获得积分10
11秒前
nextconnie完成签到,获得积分10
12秒前
12秒前
iNk应助谢逊采纳,获得20
12秒前
12秒前
13秒前
顾矜应助耍酷的小土豆采纳,获得10
13秒前
13秒前
小蘑菇应助耍酷的小土豆采纳,获得10
13秒前
Jasper应助耍酷的小土豆采纳,获得10
13秒前
李爱国应助耍酷的小土豆采纳,获得10
13秒前
13秒前
野猪亨利发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4462912
求助须知:如何正确求助?哪些是违规求助? 3925880
关于积分的说明 12182640
捐赠科研通 3578361
什么是DOI,文献DOI怎么找? 1965960
邀请新用户注册赠送积分活动 1004730
科研通“疑难数据库(出版商)”最低求助积分说明 899061