已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Beyond global synchrony: equivalence between Kuramoto oscillators and Wilson-Cowan model for large-scale brain networks

Kuramoto模型 联轴节(管道) 统计物理学 节点(物理) 网络动力学 等价(形式语言) 物理 同步(交流) 拓扑(电路) 计算机科学 数学 量子力学 机械工程 组合数学 离散数学 工程类
作者
Ahmed H. Abd-Elrazik,Fidel Torres,Mónica Otero,Caroline A. Lea-Carnall,Wael El-Deredy
标识
DOI:10.1117/12.2670120
摘要

Oscillations are ubiquitous in the nervous system, from single neurons to whole brain networks. The link between neural oscillations and cognition and behaviour is actively investigated by cognitive and computational neuroscience. Biophysically motivated computational models, such as Wilson-Cowan [W-C], have contributed to the understanding of the dynamics of oscillatory neuronal networks. W-C describes mean field interactions between excitatory/inhibitory neural populations. Using Malkin’s Theorem we show the equivalence, under certain conditions, between the W-C model and the Kuramoto oscillators, with the advantage that the latter comprises fewer parameters. We construct a thirty-two nodes network of Kuramoto oscillators, coupled using two options: homogeneous (same strength in all connections) and heterogeneous (different values of coupling strengths). We characterized the Kuramoto network synchrony by measuring the Kuramoto order parameter, and the frequency spectrum of each oscillator using Welch’s periodograms. We characterized those two features as a function of number of nodes, their intrinsic frequency, and the global coupling parameter. Using variable intrinsic frequency between oscillators, we found that as we increase the number of nodes of the system, the global synchrony becomes dependent on the global coupling strength. Also, as global coupling increases, the frequency spectrum of each oscillator converges to the mean intrinsic frequency, similar to the case when the intrinsic frequency is equal for all nodes. We conclude that the Kuramoto order parameter alone is not enough of characterizing network dynamics, and that a distribution of intrinsic node frequency is important to generate the sort of network dynamics observed in brain imaging data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助30
3秒前
爆米花应助kangjie123采纳,获得10
3秒前
3秒前
3秒前
li驳回了小二郎应助
4秒前
sky11发布了新的文献求助10
8秒前
茶叙汤言完成签到,获得积分10
16秒前
研友_VZG7GZ应助绿绿采纳,获得10
17秒前
22秒前
杨颖发布了新的文献求助10
26秒前
洁净的雪一完成签到 ,获得积分10
30秒前
清晨牛完成签到,获得积分10
33秒前
33秒前
慕若涵冰完成签到,获得积分10
34秒前
35秒前
36秒前
39秒前
kejun发布了新的文献求助30
39秒前
长情寒凝完成签到,获得积分10
44秒前
科研通AI5应助淡然的蚂蚁采纳,获得10
45秒前
丘比特应助科研通管家采纳,获得10
45秒前
酷波er应助科研通管家采纳,获得10
45秒前
46秒前
搜集达人应助科研通管家采纳,获得10
46秒前
地表飞猪应助科研通管家采纳,获得50
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
爆米花应助科研通管家采纳,获得20
46秒前
NexusExplorer应助科研通管家采纳,获得10
46秒前
星辰大海应助科研通管家采纳,获得10
46秒前
Lucas应助科研通管家采纳,获得10
46秒前
51秒前
慕青应助DAMAOMI采纳,获得10
52秒前
53秒前
12完成签到,获得积分10
53秒前
idynamics发布了新的文献求助10
53秒前
完美世界应助yoshlpzxr采纳,获得10
53秒前
54秒前
55秒前
赵大宝发布了新的文献求助10
56秒前
杨颖完成签到,获得积分10
57秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798216
求助须知:如何正确求助?哪些是违规求助? 3343654
关于积分的说明 10317211
捐赠科研通 3060416
什么是DOI,文献DOI怎么找? 1679497
邀请新用户注册赠送积分活动 806655
科研通“疑难数据库(出版商)”最低求助积分说明 763282