A Machine Learning Model To Predict CO2 Reduction Reactivity and Products Transferred from Metal-Zeolites

反应性(心理学) 电负性 催化作用 密度泛函理论 金属 甲醇 化学 过渡金属 氧化还原 计算化学 价(化学) 沸石 物理化学 无机化学 有机化学 病理 替代医学 医学
作者
Qin Zhu,Yuming Gu,Xinyi Liang,Xinzhu Wang,Jing Ma
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:12 (19): 12336-12348 被引量:35
标识
DOI:10.1021/acscatal.2c03250
摘要

Various reactive intermediates and Cn products from carbon dioxide reduction reaction (CO2RR) play critical roles in the chemical and fuel industry. Developing easily accessible activity descriptors to predict possible intermediates and products of CO2RR is of great importance. The free energy changes (ΔG) for all possible reaction intermediate and product probability (P) of CO2 reduction to methanol, methane, and formaldehyde on 26 single-atom catalysts (SACs) in zeolites were predicted by density functional theory (DFT) calculations and machine learning (ML) models. The adsorption free energies of ΔG*OH and ΔG*O*CH2 were highly correlated with catalytic activity. Producing methanol was favorable for metal-zeolites with early transition metals and main group elements. Methane production was more feasible for some systems such as Co-zeolite, due to the low free energy and high selectivity against the hydrogen evolution reaction. Both XGBoost and ExtraTrees algorithms could give satisfactory predictions of ΔG and P in CO2RR using descriptors of reaction pathways, metal, charge transfer (CT) between the metal and reaction intermediate, hydrogen bond interaction between the intermediate and zeolite framework, and geometry. The global electronegativity difference (δχT) and average ionization energy difference (δIE) between the metal-zeolite and intermediate were introduced as features (along with the valence electron number of metals and the atomic number of reaction species) for prediction of CT values without the need of DFT calculations. The CT feature could be replaced by some additional descriptors such as the band gap (Eg) or coordination number of metals to intermediates in training ML models for free energy prediction. ML models on an external test such as MOFs, 2D materials, and molecular complex materials indicate that the proposed descriptors are general for the reaction free energy change and product prediction of SACs in CO2RR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小金刀完成签到,获得积分10
1秒前
DaLu发布了新的文献求助10
4秒前
6秒前
冰魂应助章鱼采纳,获得20
6秒前
阿杜阿杜完成签到,获得积分20
8秒前
9秒前
C15发布了新的文献求助10
11秒前
cdercder应助一千三百香采纳,获得10
11秒前
Lty发布了新的文献求助10
12秒前
jenningseastera应助Emma采纳,获得10
13秒前
细腻的海雪完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
情怀应助C15采纳,获得10
17秒前
LWQ123完成签到,获得积分10
17秒前
冰魂应助远志采纳,获得30
19秒前
19秒前
李健的小迷弟应助DaLu采纳,获得10
19秒前
自信不愁发布了新的文献求助10
20秒前
阿灵发布了新的文献求助10
21秒前
22秒前
yinshaoyu21发布了新的文献求助10
22秒前
23秒前
华仔应助大佬采纳,获得10
24秒前
我是老大应助默言晨曦采纳,获得10
25秒前
ZZZ发布了新的文献求助10
26秒前
边贺完成签到 ,获得积分10
26秒前
HEAUBOOK应助柠檬小丸子采纳,获得10
27秒前
27秒前
乐乐应助kkscanl采纳,获得10
28秒前
shain完成签到,获得积分10
28秒前
RuoxuanWang发布了新的文献求助10
28秒前
30秒前
lalala完成签到,获得积分10
31秒前
32秒前
33秒前
35秒前
阿米尔灿发布了新的文献求助10
36秒前
大佬发布了新的文献求助10
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800289
求助须知:如何正确求助?哪些是违规求助? 3345565
关于积分的说明 10325834
捐赠科研通 3062031
什么是DOI,文献DOI怎么找? 1680717
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557