Proteomics-Derived Biomarker Panel Improves Diagnostic Precision to Classify Endometrioid and High-grade Serous Ovarian Carcinoma

生物标志物 浆液性液体 卵巢癌 卵巢癌 蛋白质组学 医学 肿瘤科 浆液性癌 病理 内科学 癌症 生物 生物化学 基因
作者
Dylan Z. Dieters‐Castator,Peter Rambau,Linda E. Kelemen,Gabrielle M. Siegers,Gilles Lajoie,Lynne‐Marie Postovit,Martin Köbel
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:25 (14): 4309-4319 被引量:45
标识
DOI:10.1158/1078-0432.ccr-18-3818
摘要

Abstract Purpose: Ovarian carcinomas are a group of distinct diseases classified by histotypes. As histotype-specific treatment evolves, accurate classification will become critical for optimal precision medicine approaches. Experimental Design: To uncover differences between the two most common histotypes, high-grade serous (HGSC) and endometrioid carcinoma, we performed label-free quantitative proteomics on freshly frozen tumor tissues (HGSC, n = 10; endometrioid carcinoma, n = 10). Eight candidate protein biomarkers specific to endometrioid carcinoma were validated by IHC using tissue microarrays representing 361 cases of either endometrioid carcinoma or HGSC. Results: More than 500 proteins were differentially expressed (P < 0.05) between endometrioid carcinoma and HGSC tumor proteomes. A ranked set of 106 proteins was sufficient to correctly discriminate 90% of samples. IHC validated KIAA1324 as the most discriminatory novel biomarker for endometrioid carcinoma. An 8-marker panel was found to exhibit superior performance for discriminating endometrioid carcinoma from HGSC compared with the current standard of WT1 plus TP53 alone, improving the classification rate for HGSC from 90.7% to 99.2%. Endometrioid carcinoma–specific diagnostic markers such as PLCB1, KIAA1324, and SCGB2A1 were also significantly associated with favorable prognosis within endometrioid carcinoma suggesting biological heterogeneity within this histotype. Pathway analysis of proteomic data revealed differences between endometrioid carcinoma and HGSC pertaining to estrogen and interferon signalling. Conclusions: In summary, these findings support the use of multi-marker panels for the differential diagnosis of difficult cases resembling endometrioid carcinoma and HGSC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Drwenlu发布了新的文献求助10
1秒前
顾矜应助徐先生采纳,获得10
2秒前
CodeCraft应助豆⑧采纳,获得10
2秒前
mayumei发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
xinyue发布了新的文献求助10
5秒前
FOOL完成签到,获得积分10
6秒前
鼠牛虎兔发布了新的文献求助10
7秒前
笨笨幻灵发布了新的文献求助10
7秒前
一个柔弱的读书人完成签到 ,获得积分10
8秒前
JamesPei应助12345采纳,获得10
8秒前
sunshine_920完成签到 ,获得积分10
10秒前
甜美半山完成签到,获得积分10
10秒前
11秒前
无花果应助饭饭采纳,获得10
12秒前
14秒前
14秒前
mendicant完成签到,获得积分10
14秒前
15秒前
灯火阑珊给灯火阑珊的求助进行了留言
15秒前
香蕉觅云应助wgl200212采纳,获得10
16秒前
乌啦啦完成签到,获得积分10
16秒前
我不是笨蛋完成签到,获得积分10
18秒前
Leon完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
酷波er应助pililili采纳,获得10
19秒前
Tink完成签到,获得积分0
20秒前
Nuyoah发布了新的文献求助10
20秒前
徐先生发布了新的文献求助10
20秒前
xinyue完成签到,获得积分10
21秒前
Choilee完成签到,获得积分10
24秒前
镓氧锌钇铀应助想想采纳,获得20
24秒前
26秒前
科研通AI2S应助乐瑶采纳,获得10
28秒前
风清扬发布了新的文献求助10
30秒前
归尘发布了新的文献求助10
32秒前
Owen应助乐橙采纳,获得10
34秒前
holi完成签到 ,获得积分10
36秒前
123发布了新的文献求助10
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492034
求助须知:如何正确求助?哪些是违规求助? 4590380
关于积分的说明 14430051
捐赠科研通 4522666
什么是DOI,文献DOI怎么找? 2477973
邀请新用户注册赠送积分活动 1463068
关于科研通互助平台的介绍 1435723