Advances in Auto-Segmentation

分割 深度学习 人工智能 卷积神经网络 计算机科学 图像分割 医学 过程(计算) 机器学习 计算机视觉 模式识别(心理学) 操作系统
作者
Carlos Cárdenas,Jinzhong Yang,Brian Anderson,Laurence E. Court,Kristy Brock
出处
期刊:Seminars in Radiation Oncology [Elsevier BV]
卷期号:29 (3): 185-197 被引量:343
标识
DOI:10.1016/j.semradonc.2019.02.001
摘要

Manual image segmentation is a time-consuming task routinely performed in radiotherapy to identify each patient's targets and anatomical structures. The efficacy and safety of the radiotherapy plan requires accurate segmentations as these regions of interest are generally used to optimize and assess the quality of the plan. However, reports have shown that this process can be subject to significant inter- and intraobserver variability. Furthermore, the quality of the radiotherapy treatment, and subsequent analyses (ie, radiomics, dosimetric), can be subject to the accuracy of these manual segmentations. Automatic segmentation (or auto-segmentation) of targets and normal tissues is, therefore, preferable as it would address these challenges. Previously, auto-segmentation techniques have been clustered into 3 generations of algorithms, with multiatlas based and hybrid techniques (third generation) being considered the state-of-the-art. More recently, however, the field of medical image segmentation has seen accelerated growth driven by advances in computer vision, particularly through the application of deep learning algorithms, suggesting we have entered the fourth generation of auto-segmentation algorithm development. In this paper, the authors review traditional (nondeep learning) algorithms particularly relevant for applications in radiotherapy. Concepts from deep learning are introduced focusing on convolutional neural networks and fully-convolutional networks which are generally used for segmentation tasks. Furthermore, the authors provide a summary of deep learning auto-segmentation radiotherapy applications reported in the literature. Lastly, considerations for clinical deployment (commissioning and QA) of auto-segmentation software are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张帆远航发布了新的文献求助10
刚刚
蓝天完成签到,获得积分10
刚刚
发10篇SCI发布了新的文献求助10
3秒前
SciGPT应助俭朴的皮卡丘采纳,获得10
4秒前
4秒前
5秒前
5秒前
乐乐应助激动的一手采纳,获得10
5秒前
jawa完成签到 ,获得积分10
6秒前
李健的小迷弟应助FDY采纳,获得80
6秒前
7秒前
yinhao发布了新的文献求助10
8秒前
MoYu发布了新的文献求助10
10秒前
Jackay发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
xxxllllll发布了新的文献求助10
12秒前
12秒前
馆长应助xuan采纳,获得10
14秒前
科研小猪手完成签到,获得积分10
14秒前
南枝完成签到 ,获得积分10
14秒前
15秒前
幸福大白发布了新的文献求助10
16秒前
16秒前
高高应助松绿格采纳,获得10
16秒前
pure123发布了新的文献求助10
19秒前
xixi发布了新的文献求助10
19秒前
19秒前
19秒前
俭朴的皮卡丘完成签到 ,获得积分10
19秒前
20秒前
xsss完成签到 ,获得积分10
20秒前
20秒前
maybe豪发布了新的文献求助10
23秒前
23秒前
Yanan_Z发布了新的文献求助10
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4467270
求助须知:如何正确求助?哪些是违规求助? 3928664
关于积分的说明 12190689
捐赠科研通 3581996
什么是DOI,文献DOI怎么找? 1968478
邀请新用户注册赠送积分活动 1006855
科研通“疑难数据库(出版商)”最低求助积分说明 900935