已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

First-break automatic picking with fully convolutional networks and transfer learning

计算机科学 学习迁移 卷积神经网络 波形 噪音(视频) 人工智能 信号(编程语言) 分割 深度学习 集合(抽象数据类型) 图像(数学) 模式识别(心理学) 电信 程序设计语言 雷达
作者
Tao Xie,Yue Zhao,Xuming Jiao,Wenjing Sang,Sanyi Yuan
标识
DOI:10.1190/segam2019-3215277.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019First-break automatic picking with fully convolutional networks and transfer learningAuthors: Tao XieYue ZhaoXuming JiaoWenjing SangSanyi YuanTao XieGeophysical Research Institute, China Oilfield Services LimitedSearch for more papers by this author, Yue ZhaoChina University of PetroleumSearch for more papers by this author, Xuming JiaoGeophysical Research Institute, China Oilfield Services LimitedSearch for more papers by this author, Wenjing SangChina University of PetroleumSearch for more papers by this author, and Sanyi YuanChina University of PetroleumSearch for more papers by this authorhttps://doi.org/10.1190/segam2019-3215277.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractPicking first-break (FB) from seismic trace is an important step for seismic refraction and seismic reflection exploration. Conventional picking methods are mostly based on identifying the differences between seismic signal and noise in terms of amplitude, phase, or frequency. We investigate a waveform classification and FB-picking method based on fully convolutional neural networks (FCNs) and transfer learning (TL). We consider FB-picking as a binary image segmentation problem of labelling a 2D seismic image with ones on signal and zeros on noise. Through FCNs, we achieve a fast and automatic image to image waveform classification. The boundaries between noise-dominant background above FBs and signal-dominant waveforms below FBs are the location of FBs. After training FB-picking network with a training set, we transfer the optimal network parameters into another land adjacent dataset to accelerate the convergence and self-learning. Testing results demonstrate that the proposed strategy can not only achieve an efficient FB-picking result with more than 90% accuracy, but also can be flexibly extended to other seismic data.Presentation Date: Wednesday, September 18, 2019Session Start Time: 1:50 PMPresentation Start Time: 1:50 PMLocation: 301BPresentation Type: OralKeywords: traveltime, machine learning, neural networksPermalink: https://doi.org/10.1190/segam2019-3215277.1FiguresReferencesRelatedDetailsCited byConvolution neural network application for first‐break picking for land seismic data28 June 2022 | Geophysical Prospecting, Vol. 70, No. 7Automated first break picking with constrained pooling networksDavid Cova, Peigen Xie, and Phuong-Thu Trinh30 September 2020A Comparative Study of Five Networks for Reservoir Classification Based on Geophysical Logging SignalsIEEE Access, Vol. 8 SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 01 Aug 2019 CITATION INFORMATION Tao Xie, Yue Zhao, Xuming Jiao, Wenjing Sang, and Sanyi Yuan, (2019), "First-break automatic picking with fully convolutional networks and transfer learning," SEG Technical Program Expanded Abstracts : 4972-4976. https://doi.org/10.1190/segam2019-3215277.1 Plain-Language Summary Keywordstraveltimemachine learningneural networksPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
3秒前
4秒前
4秒前
墨尘发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
hc发布了新的文献求助10
7秒前
白鸽完成签到,获得积分10
8秒前
YBR完成签到 ,获得积分10
8秒前
8秒前
xiaoxiao发布了新的文献求助10
10秒前
我是老大应助TingtingGZ采纳,获得10
11秒前
12秒前
12秒前
13秒前
源源完成签到 ,获得积分10
17秒前
横A发布了新的文献求助10
18秒前
yuyulovewei发布了新的文献求助50
19秒前
花花521完成签到,获得积分10
19秒前
20秒前
suchui完成签到,获得积分10
21秒前
枕边人完成签到 ,获得积分10
23秒前
24秒前
24秒前
田様应助Nookic采纳,获得10
24秒前
云漫山完成签到 ,获得积分10
25秒前
李爱国应助薛定谔的柯基采纳,获得10
27秒前
27秒前
我是站长才怪完成签到,获得积分0
27秒前
hc完成签到,获得积分10
32秒前
33秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
乐乐应助横A采纳,获得10
34秒前
35秒前
36秒前
38秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863755
求助须知:如何正确求助?哪些是违规求助? 3405993
关于积分的说明 10648145
捐赠科研通 3129879
什么是DOI,文献DOI怎么找? 1726162
邀请新用户注册赠送积分活动 831471
科研通“疑难数据库(出版商)”最低求助积分说明 779849