Towards Bayesian Deep Learning: A Framework and Some Existing Methods

人工智能 计算机科学 推论 机器学习 深度学习 图形模型 贝叶斯推理 贝叶斯网络 概率逻辑 贝叶斯概率 感知 神经科学 生物
作者
Hao Wang,Dit‐Yan Yeung
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 3395-3408 被引量:228
标识
DOI:10.1109/tkde.2016.2606428
摘要

While perception tasks such as visual object recognition and text understanding play an important role in human intelligence, subsequent tasks that involve inference, reasoning, and planning require an even higher level of intelligence. The past few years have seen major advances in many perception tasks using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. To achieve integrated intelligence that involves both perception and inference, it is naturally desirable to tightly integrate deep learning and Bayesian models within a principled probabilistic framework, which we call Bayesian deep learning. In this unified framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in return, the feedback from the inference process is able to enhance the perception of text or images. This paper proposes a general framework for Bayesian deep learning and reviews its recent applications on recommender systems, topic models, and control. In this paper, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as the Bayesian treatment of neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助YiWei采纳,获得10
1秒前
1秒前
1秒前
SciGPT应助Bi8bo采纳,获得10
1秒前
cyy完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
搞怪如豹完成签到,获得积分10
5秒前
科研通AI6应助JTB采纳,获得10
5秒前
5秒前
5秒前
酷酷依秋发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
碧蓝柠檬完成签到,获得积分10
6秒前
bbd发布了新的文献求助10
6秒前
CodeCraft应助乔哥儿采纳,获得10
7秒前
qq发布了新的文献求助10
7秒前
涛123完成签到 ,获得积分10
7秒前
8秒前
8秒前
臭皮匠完成签到,获得积分10
8秒前
8秒前
8秒前
研友_VZG7GZ应助秋夜白采纳,获得10
9秒前
老福贵儿应助迅速的幻雪采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
乐乐应助wonder123采纳,获得10
9秒前
10秒前
10秒前
缥缈橘子发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508004
求助须知:如何正确求助?哪些是违规求助? 4603457
关于积分的说明 14485563
捐赠科研通 4537487
什么是DOI,文献DOI怎么找? 2486678
邀请新用户注册赠送积分活动 1469203
关于科研通互助平台的介绍 1441570