A novel molecular representation with BiGRU neural networks for learning atom

代表(政治) 计算机科学 人工智能 人工神经网络 Atom(片上系统) 模式识别(心理学) 政治学 政治 嵌入式系统 法学
作者
Xuan Lin,Zhe Quan,Zhi-Jie Wang,Huang Huang,Xiangxiang Zeng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:21 (6): 2099-2111 被引量:125
标识
DOI:10.1093/bib/bbz125
摘要

Abstract Molecular representations play critical roles in researching drug design and properties, and effective methods are beneficial to assisting in the calculation of molecules and solving related problem in drug discovery. In previous years, most of the traditional molecular representations are based on hand-crafted features and rely heavily on biological experimentations, which are often costly and time consuming. However, recent researches achieve promising results using machine learning on various domains. In this article, we present a novel method named Smi2Vec-BiGRU that is designed for learning atoms and solving the single- and multitask binary classification problems in the field of drug discovery, which are the basic and also key problems in this field. Specifically, our approach transforms the molecule data in the SMILES format into a set of sample vectors and then feeds them into the bidirectional gated recurrent unit neural networks for training, which learns low-dimensional vector representations for molecular drug. We conduct extensive experiments on several widely used benchmarks including Tox21, SIDER and ClinTox. The experimental results show that our approach can achieve state-of-the-art performance on these benchmarking datasets, demonstrating the feasibility and competitiveness of our proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王完成签到 ,获得积分10
1秒前
漂亮芸发布了新的文献求助10
1秒前
beizi发布了新的文献求助10
1秒前
KD357完成签到,获得积分10
1秒前
Cortisol完成签到,获得积分10
1秒前
1秒前
2秒前
孔雀翎完成签到,获得积分10
2秒前
孔wj完成签到,获得积分10
3秒前
泡芙完成签到 ,获得积分10
3秒前
华西招生版完成签到,获得积分10
3秒前
3秒前
啊我吗完成签到,获得积分10
4秒前
wrahb完成签到,获得积分10
4秒前
Terry完成签到,获得积分10
4秒前
ww发布了新的文献求助30
4秒前
紫麒麟完成签到,获得积分10
5秒前
Z170完成签到,获得积分10
5秒前
KYDD完成签到,获得积分10
6秒前
6秒前
yibaozhangfa完成签到,获得积分10
7秒前
7秒前
7秒前
瑞仔发布了新的文献求助10
7秒前
8秒前
熊佳豪发布了新的文献求助10
9秒前
9秒前
fa小黄完成签到,获得积分10
9秒前
ryg应助Aja Wu采纳,获得10
9秒前
寂寞的菲鹰完成签到,获得积分10
10秒前
ww完成签到,获得积分10
10秒前
10秒前
乐乐应助ZPC采纳,获得10
12秒前
ZBB发布了新的文献求助10
13秒前
13秒前
13秒前
OFish完成签到,获得积分10
13秒前
13秒前
clientprogram完成签到,获得积分0
13秒前
liujinjin发布了新的文献求助10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Chitosan brush for professional removal of plaque in mild peri-implantitis 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4075470
求助须知:如何正确求助?哪些是违规求助? 3614256
关于积分的说明 11471535
捐赠科研通 3332297
什么是DOI,文献DOI怎么找? 1831658
邀请新用户注册赠送积分活动 901588
科研通“疑难数据库(出版商)”最低求助积分说明 820344