已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of AOP relevant to microplastics based on toxicity mechanisms of chemical additives using ToxCast™ and deep learning models combined approach

微塑料 毒性 背景(考古学) 机制(生物学) 生物 化学 环境化学 古生物学 哲学 有机化学 认识论
作者
Jaeseong Jeong,Jinhee Choi
出处
期刊:Environment International [Elsevier BV]
卷期号:137: 105557-105557 被引量:85
标识
DOI:10.1016/j.envint.2020.105557
摘要

Various additives are used in plastic products to improve the properties and the durability of the plastics. Their possible elution from the plastics when plastics are fragmented into micro- and nano-size in the environment is suspected to one of the major contributors to environmental and human toxicity of microplastics. In this context, to better understand the hazardous effect of microplastics, the toxicity of chemical additives was investigated. Fifty most common chemicals presented in plastics were selected as target additives. Their toxicity was systematically identified using apical and molecular toxicity databases, such as ChemIDplus and ToxCast™. Among the vast ToxCast assays, those having intended gene targets were selected for identification of the mechanism of toxicity of plastic additives. Deep learning artificial neural network models were further developed based on the ToxCast assays for the chemicals not tested in the ToxCast program. Using both the ToxCast database and deep learning models, active chemicals on each ToxCast assays were identified. Through correlation analysis between molecular targets from ToxCast and mammalian toxicity results from ChemIDplus, we identified the fifteen most relevant mechanisms of toxicity for the understanding mechanism of toxicity of plastic additives. They are neurotoxicity, inflammation, lipid metabolism, and cancer pathways. Based on these, along with, previously conducted systemic review on the mechanism of toxicity of microplastics, here we have proposed potential adverse outcome pathways (AOPs) relevant to microplastics pollution. This study also suggests in vivo and in vitro toxicity database and deep learning model combined approach is appropriate to provide insight into the toxicity mechanism of the broad range of environmental chemicals, such as plastic additives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎呀哎呀呀完成签到,获得积分10
1秒前
温暖的怀蝶完成签到 ,获得积分10
2秒前
英俊的铭应助jzhou88采纳,获得10
2秒前
君乐宝发布了新的文献求助10
3秒前
5秒前
懒洋洋大王关注了科研通微信公众号
6秒前
7秒前
eric888完成签到,获得积分0
9秒前
Jasper应助Tmj-2020601243采纳,获得10
10秒前
于鱼发布了新的文献求助10
11秒前
拥你入怀发布了新的文献求助10
13秒前
天天快乐应助DownTAT采纳,获得10
18秒前
20秒前
青鱼完成签到,获得积分10
21秒前
火箭Lucky完成签到 ,获得积分10
22秒前
顺利的耶完成签到 ,获得积分10
22秒前
22秒前
25秒前
CipherSage应助hhq采纳,获得10
26秒前
Jazmin发布了新的文献求助10
27秒前
30秒前
林烯完成签到 ,获得积分10
31秒前
涵泽发布了新的文献求助10
33秒前
sharony发布了新的文献求助10
35秒前
WTT发布了新的文献求助10
37秒前
39秒前
所所应助Jazmin采纳,获得10
41秒前
英俊的铭应助grumpysquirel采纳,获得80
43秒前
liusoojoo完成签到,获得积分10
44秒前
哈哈发布了新的文献求助10
45秒前
怡轻肝发布了新的文献求助30
45秒前
aldehyde应助zl采纳,获得10
45秒前
DownTAT发布了新的文献求助10
46秒前
hhq完成签到,获得积分10
46秒前
50秒前
summer-ray完成签到,获得积分10
50秒前
刘五十七完成签到 ,获得积分10
53秒前
54秒前
55秒前
DownTAT完成签到,获得积分10
55秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903664
求助须知:如何正确求助?哪些是违规求助? 3448482
关于积分的说明 10853266
捐赠科研通 3173936
什么是DOI,文献DOI怎么找? 1753673
邀请新用户注册赠送积分活动 847826
科研通“疑难数据库(出版商)”最低求助积分说明 790473