Toward Multidiversified Ensemble Clustering of High-Dimensional Data: From Subspaces to Metrics and Beyond

聚类分析 计算机科学 集成学习 维数之咒 线性子空间 共识聚类 数据挖掘 高维数据聚类 光谱聚类 相似性(几何) 人工智能 模式识别(心理学) 子空间拓扑 公制(单位) 熵(时间箭头) 机器学习 相关聚类 数学 CURE数据聚类算法 几何学 经济 物理 图像(数学) 运营管理 量子力学
作者
Dong Huang,Chang-Dong Wang,Jianhuang Lai,Chee Keong Kwoh
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (11): 12231-12244 被引量:19
标识
DOI:10.1109/tcyb.2021.3049633
摘要

The rapid emergence of high-dimensional data in various areas has brought new challenges to current ensemble clustering research. To deal with the curse of dimensionality, recently considerable efforts in ensemble clustering have been made by means of different subspace-based techniques. However, besides the emphasis on subspaces, rather limited attention has been paid to the potential diversity in similarity/dissimilarity metrics. It remains a surprisingly open problem in ensemble clustering how to create and aggregate a large population of diversified metrics, and furthermore, how to jointly investigate the multilevel diversity in the large populations of metrics, subspaces, and clusters in a unified framework. To tackle this problem, this article proposes a novel multidiversified ensemble clustering approach. In particular, we create a large number of diversified metrics by randomizing a scaled exponential similarity kernel, which are then coupled with random subspaces to form a large set of metric-subspace pairs. Based on the similarity matrices derived from these metric-subspace pairs, an ensemble of diversified base clusterings can be thereby constructed. Furthermore, an entropy-based criterion is utilized to explore the cluster wise diversity in ensembles, based on which three specific ensemble clustering algorithms are presented by incorporating three types of consensus functions. Extensive experiments are conducted on 30 high-dimensional datasets, including 18 cancer gene expression datasets and 12 image/speech datasets, which demonstrate the superiority of our algorithms over the state of the art. The source code is available at https://github.com/huangdonghere/MDEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容前行完成签到,获得积分10
1秒前
FF发布了新的文献求助10
1秒前
borisgugugugu发布了新的文献求助10
2秒前
2秒前
研友_LX62KZ发布了新的文献求助10
4秒前
曾经发布了新的文献求助10
7秒前
7秒前
7秒前
游一完成签到,获得积分10
7秒前
7秒前
积极早晨发布了新的文献求助10
10秒前
共享精神应助仙女保苗采纳,获得10
11秒前
11秒前
borisgugugugu完成签到,获得积分10
12秒前
yyy发布了新的文献求助10
12秒前
无七完成签到 ,获得积分10
13秒前
13秒前
从容的盼晴完成签到,获得积分10
13秒前
zeng完成签到,获得积分10
14秒前
善学以致用应助笑嘻嘻采纳,获得10
15秒前
科研通AI5应助秋日思语采纳,获得10
15秒前
Singularity应助橘子采纳,获得10
19秒前
杨雨发布了新的文献求助10
19秒前
20秒前
limin发布了新的文献求助20
21秒前
杨子菁完成签到,获得积分10
23秒前
25秒前
笑嘻嘻发布了新的文献求助10
28秒前
称心乐枫完成签到,获得积分10
29秒前
slim完成签到,获得积分10
32秒前
32秒前
阿巴阿巴完成签到,获得积分10
32秒前
33秒前
34秒前
脑洞疼应助FF采纳,获得10
35秒前
赘婿应助杨雨采纳,获得30
36秒前
18746005898发布了新的文献求助10
37秒前
旭日东升发布了新的文献求助10
37秒前
38秒前
ZONG发布了新的文献求助20
39秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4404233
求助须知:如何正确求助?哪些是违规求助? 3890509
关于积分的说明 12107666
捐赠科研通 3535237
什么是DOI,文献DOI怎么找? 1939823
邀请新用户注册赠送积分活动 980732
科研通“疑难数据库(出版商)”最低求助积分说明 877456