亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid Identification of X-ray Diffraction Patterns Based on Very Limited Data by Interpretable Convolutional Neural Networks

卷积神经网络 鉴定(生物学) 模式识别(心理学) 衍射 计算机科学 人工智能 物理 生物 光学 植物
作者
Hong Wang,Yunchao Xie,Dawei Li,Heng Deng,Yunxin Zhao,Ming Xin,Jian Lin
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (4): 2004-2011 被引量:102
标识
DOI:10.1021/acs.jcim.0c00020
摘要

Large volumes of data from material characterizations call for rapid and automatic data analysis to accelerate materials discovery. Herein, we report a convolutional neural network (CNN) that was trained based on theoretical data and very limited experimental data for fast identification of experimental X-ray diffraction (XRD) patterns of metal-organic frameworks (MOFs). To augment the data for training the model, noise was extracted from experimental data and shuffled; then it was merged with the main peaks that were extracted from theoretical spectra to synthesize new spectra. For the first time, one-to-one material identification was achieved. Theoretical MOFs patterns (1012) were augmented to a whole data set of 72 864 samples. It was then randomly shuffled and split into training (58 292 samples) and validation (14 572 samples) data sets at a ratio of 4:1. For the task of discriminating, the optimized model showed the highest identification accuracy of 96.7% for the top 5 ranking on a test data set of 30 hold-out samples. Neighborhood component analysis (NCA) on the experimental XRD samples shows that the samples from the same material are clustered in groups in the NCA map. Analysis on the class activation maps of the last CNN layer further discloses the mechanism by which the CNN model successfully identifies individual MOFs from the XRD patterns. This CNN model trained by the data augmentation technique would not only open numerous potential applications for identifying XRD patterns for different materials, but also pave avenues to autonomously analyze data by other characterization tools such as FTIR, Raman, and NMR spectroscopies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
科目三应助青栞采纳,获得10
3秒前
41秒前
44秒前
DX120210165发布了新的文献求助10
45秒前
49秒前
1分钟前
冷傲的薯片完成签到,获得积分10
1分钟前
1分钟前
Tim888完成签到,获得积分10
1分钟前
ZanE完成签到,获得积分10
1分钟前
1分钟前
1分钟前
青栞完成签到,获得积分10
1分钟前
1分钟前
希望天下0贩的0应助kosangel采纳,获得10
2分钟前
青栞发布了新的文献求助10
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
kosangel发布了新的文献求助10
2分钟前
Tonson应助fly采纳,获得10
2分钟前
2分钟前
阿瓜师傅发布了新的文献求助10
2分钟前
郝誉发布了新的文献求助10
2分钟前
fly完成签到,获得积分10
2分钟前
2分钟前
踏实白柏发布了新的文献求助10
2分钟前
在水一方应助踏实白柏采纳,获得10
3分钟前
脑洞疼应助DX120210165采纳,获得30
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
DX120210165发布了新的文献求助30
3分钟前
3分钟前
kosangel完成签到,获得积分20
3分钟前
3分钟前
52发布了新的文献求助10
3分钟前
赘婿应助舒适博超采纳,获得10
4分钟前
美满尔蓝完成签到,获得积分10
4分钟前
52完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476343
求助须知:如何正确求助?哪些是违规求助? 4578021
关于积分的说明 14363359
捐赠科研通 4505924
什么是DOI,文献DOI怎么找? 2468940
邀请新用户注册赠送积分活动 1456521
关于科研通互助平台的介绍 1430207