KEAP1型
蛋白质稳态
小分子
药物发现
转录因子
药理学
化学
前药
氧化应激
药物开发
炎症
体内
生物化学
计算生物学
生物信息学
药品
生物
免疫学
基因
遗传学
作者
Hai-Shan Zhou,Yan Wang,Qidong You,Zhengyu Jiang
标识
DOI:10.1080/13543776.2020.1715365
摘要
Introduction: The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is the first line of defense against a plethora of environmental or endogenous deviations in redox metabolism, proteostasis, inflammation, etc. Therefore, pharmacological activation of Nrf2 is a potential therapeutic approach for several diseases related to oxidative stress and inflammation, such as cancer, cardiovascular, and neurodegenerative diseases.Areas covered: The authors first describe the biological function of Nrf2 and the molecular regulatory mechanism of Keap1-Nrf2-ARE ((Kelch-like ECH-Associating protein 1)-Nrf2-(antioxidant response element)). Then, they review recent progress of covalent activators and non-covalent Keap1-Nrf2 protein-protein interaction (PPI) inhibitors from patents and publications in 2017-present, consisting of new chemical molecules, structure optimization of reported activators and progress in preclinical or clinical trials.Expert opinion: Despite significant achievements in the development of Nrf2 activators, the selectivity is the primary consideration. Due to reacting with redox-sensitive cysteines in proteins except for Keap1, electrophilic activators often exhibit off-target effects. For Keap1-Nrf2 PPI inhibitors, how to enhance in vivo efficacy and/or penetrate blood-brain barrier (BBB) to reach central nervous system (CNS) is also challenging. Fragment-based drug discovery (FBDD), carboxylic acid bioisosteric replacement and prodrug approach might be used to circumvent this challenge. Moreover, the possibility of cancer risk caused by Nrf2 activation needs to be considered carefully.
科研通智能强力驱动
Strongly Powered by AbleSci AI