A robust two‐gene signature for glioblastoma survival prediction

比例危险模型 基因签名 对数秩检验 肿瘤科 生存分析 置信区间 内科学 医学 微阵列分析技术 胶质瘤 生物 基因 基因表达 癌症研究 遗传学
作者
Yuhualei Pan,Jianhua Zhang,Lianhe Zhao,Jincheng Guo,Song Wang,Yushang Zhao,Shaoxin Tao,Huan Wang,Yanbing Zhu
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:121 (7): 3593-3605 被引量:8
标识
DOI:10.1002/jcb.29653
摘要

Abstract Glioblastoma multiforme (GBM) is a highly malignant brain tumor. We explored the prognostic gene signature in 443 GBM samples by systematic bioinformatics analysis, using GSE16011 with microarray expression and corresponding clinical data from Gene Expression Omnibus as the training set. Meanwhile, patients from The Chinese Glioma Genome Atlas database (CGGA) were used as the test set and The Cancer Genome Atlas database (TCGA) as the validation set. Through Cox regression analysis, Kaplan‐Meier analysis, t‐distributed Stochastic Neighbor Embedding algorithm, clustering, and receiver operating characteristic analysis, a two‐gene signature (GRIA2 and RYR3) associated with survival was selected in the GSE16011 dataset. The GRIA2‐RYR3 signature divided patients into two risk groups with significantly different survival in the GSE16011 dataset (median: 0.72, 95% confidence interval [CI]: 0.64‐0.98, vs median: 0.98, 95% CI: 0.65‐1.61 years, logrank test P < .001), the CGGA dataset (median: 0.84, 95% CI: 0.70‐1.18, vs median: 1.21, 95% CI: 0.95‐2.94 years, logrank test P = .0017), and the TCGA dataset (median: 1.03, 95% CI: 0.86‐1.24, vs median: 1.23, 95% CI: 1.04‐1.85 years, logrank test P = .0064), validating the predictive value of the signature. And the survival predictive potency of the signature was independent from clinicopathological prognostic features in multivariable Cox analysis. We found that after transfection of U87 cells with small interfering RNA, GRIA2 and RYR3 influenced the biological behaviors of proliferation, migration, and invasion of glioblastoma cells. In conclusion, the two‐gene signature was a robust prognostic model to predict GBM survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻发布了新的文献求助10
刚刚
星辰大海应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得30
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得30
1秒前
1秒前
否极泰来应助科研通管家采纳,获得10
1秒前
cdh1994应助科研通管家采纳,获得20
1秒前
41完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
调皮秋尽完成签到,获得积分10
2秒前
qqq发布了新的文献求助10
2秒前
sun发布了新的文献求助10
2秒前
晴空雯影完成签到,获得积分10
2秒前
火锅完成签到,获得积分10
3秒前
清新的马里奥完成签到 ,获得积分10
3秒前
3秒前
olivia完成签到,获得积分10
3秒前
今后应助活力蜗牛采纳,获得10
4秒前
慕青应助zhangfan采纳,获得10
4秒前
怡然觅山完成签到,获得积分10
4秒前
4秒前
Fox发布了新的文献求助10
5秒前
Sev完成签到 ,获得积分10
5秒前
6秒前
6秒前
。。。完成签到 ,获得积分10
7秒前
7秒前
FashionBoy应助gkads采纳,获得10
7秒前
丘比特应助踏实口红采纳,获得10
8秒前
鬲木发布了新的文献求助10
8秒前
8秒前
卓延恶发布了新的文献求助10
8秒前
girl发布了新的文献求助10
8秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
Cardiovascular Disease Genetic Risk Prediction Models: A Systematic Review 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063970
求助须知:如何正确求助?哪些是违规求助? 3602387
关于积分的说明 11441255
捐赠科研通 3325526
什么是DOI,文献DOI怎么找? 1828154
邀请新用户注册赠送积分活动 898633
科研通“疑难数据库(出版商)”最低求助积分说明 819103