DNA甲基化
DNA
甲基化DNA免疫沉淀
表观遗传学
生物
分子生物学
甲基化
计算生物学
生物化学
化学
基因
基因表达
作者
Albert Jeltsch,Julian Broche,Cristiana Lungu,Pavel Bashtrykov
标识
DOI:10.1016/j.jmb.2019.08.020
摘要
5-Methylcytosine binding domain (MBD) family proteins are essential readers of DNA methylation. Their methylation specific DNA binding has been exploited in the context of two main groups of important biotechnological applications. In the first, an MBD domain is used to bind methylated DNA in vitro. This can be employed for global DNA methylation analysis in MBD-seq assays, where methylated DNA is purified from fragmented genomic DNA by MBD pulldown or capture, followed by next-generation sequencing (NGS) and downstream data analysis as established for ChIP-seq applications. In addition, the ability of MBD domains to bind methylated DNA can be used for in vitro DNMT activity and inhibition assays. In the second type of applications, MBD domains are used to bind methylated DNA in cells. In MBD imaging, these domains are fused to fluorophores and expressed in cells, where they bind to methylated DNA allowing the readout of DNA methylation by fluorescence microscopy. This approach recently has been further developed to allow the locus-specific readout of DNA methylation using bimolecular fluorescence complementation-based bimolecular anchor detector sensors. These tools, which are compatible with live cell imaging, combine the sequence-specific DNA binding of anchor domains and the 5-methylcytosine-specific binding of an MBD domain to chromatin. Depending on the individual assay, MBD-based detection systems for DNA methylation provide important advantages, ranging from cost efficiency and easy workflows to unique opportunities for the readout of methylation levels in living cells with locus-specific resolution during organismic development.
科研通智能强力驱动
Strongly Powered by AbleSci AI