嵌入
计算机科学
人工智能
Python(编程语言)
人工神经网络
特征学习
深度学习
机器学习
Boosting(机器学习)
深层神经网络
模式识别(心理学)
代表(政治)
政治学
政治
操作系统
法学
作者
Zhibin Lv,Feifei Cui,Quan Zou,Lichao Zhang,Lei Xu
摘要
Anticancer peptides constitute one of the most promising therapeutic agents for combating common human cancers. Using wet experiments to verify whether a peptide displays anticancer characteristics is time-consuming and costly. Hence, in this study, we proposed a computational method named identify anticancer peptides via deep representation learning features (iACP-DRLF) using light gradient boosting machine algorithm and deep representation learning features. Two kinds of sequence embedding technologies were used, namely soft symmetric alignment embedding and unified representation (UniRep) embedding, both of which involved deep neural network models based on long short-term memory networks and their derived networks. The results showed that the use of deep representation learning features greatly improved the capability of the models to discriminate anticancer peptides from other peptides. Also, UMAP (uniform manifold approximation and projection for dimension reduction) and SHAP (shapley additive explanations) analysis proved that UniRep have an advantage over other features for anticancer peptide identification. The python script and pretrained models could be downloaded from https://github.com/zhibinlv/iACP-DRLF or from http://public.aibiochem.net/iACP-DRLF/.
科研通智能强力驱动
Strongly Powered by AbleSci AI