Implementation of deep-learning algorithm for obstacle detection and collision avoidance for robotic harvester

计算机科学 卷积神经网络 规范化(社会学) 算法 人工智能 特征(语言学) 人工神经网络 网络模型 模式识别(心理学) 人类学 语言学 哲学 社会学
作者
Yang Li,Michihisa Iida,Tomoya Suyama,Masahiko Suguri,R. MASUDA
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:174: 105499-105499 被引量:31
标识
DOI:10.1016/j.compag.2020.105499
摘要

Convolutional neural networks (CNNs) are the current state of the art systems in image semantic segmentation (SS). However, because it requires a large computational cost, it is not suitable for running on embedded devices, such as on rice combine harvesters. In order to detect and identify the surrounding environment for a rice combine harvester in real time, a neural network using Network Slimming to reduce the network model size, which takes wide neural networks as the input model, yielding a compact model (hereafter referred to as “pruned model”) with comparable accuracy, was applied based on an image cascade network (ICNet). Network Slimming performs channel-level sparsity of convolutional layers in the ICNet by imposing L1 regularization on channel scaling factors with the corresponding batch normalization layer, which removes less informative feature channels in the convolutional layers to obtain a more compact model. Then each of the pruned models were evaluated by mean intersection over union (IoU) on the test set. When the compaction ratio is 80%, it gives a 97.4% reduction of model volume size, running 1.33 times faster with comparable accuracy as the original model. The results showed that when the compaction ratio is less than 80%, a more efficient (less computational cost) model with a slightly reduced accuracy in comparison to the original model was achieved. Field tests were conducted with the pruned model (80% compaction ratio) to verify the performance of obstacle detection. Results showed that the average success rate of collision avoidance was 96.6% at an average processing speed of 32.2 FPS (31.1 ms per frame) with an image size of 640 × 480 pixels on a Jetson Xavier. It shows that the pruned model can be used for obstacle detection and collision avoidance in robotic harvesters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油加油发布了新的文献求助30
2秒前
5秒前
xiaozheng完成签到,获得积分10
5秒前
zhang完成签到 ,获得积分10
7秒前
个性的紫菜应助司徒文青采纳,获得10
8秒前
8秒前
yi只熊发布了新的文献求助10
9秒前
欣喜柚子完成签到 ,获得积分10
11秒前
墨墨完成签到,获得积分10
12秒前
国家栋梁发布了新的文献求助10
13秒前
科研通AI2S应助eggplant采纳,获得10
14秒前
妮儿发布了新的文献求助10
16秒前
fragile完成签到,获得积分10
18秒前
19秒前
科研通AI2S应助海的呼唤采纳,获得10
20秒前
科研通AI5应助唐咩咩咩采纳,获得10
20秒前
22秒前
国家栋梁完成签到,获得积分10
22秒前
24秒前
CrazyLion发布了新的文献求助30
25秒前
27秒前
yi只熊完成签到,获得积分10
29秒前
知了完成签到 ,获得积分10
34秒前
46秒前
钟钟完成签到 ,获得积分10
46秒前
Jasper应助科研通管家采纳,获得10
47秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
科研通AI5应助科研通管家采纳,获得30
47秒前
wanci应助科研通管家采纳,获得10
47秒前
失眠醉易应助科研通管家采纳,获得10
47秒前
48秒前
48秒前
51秒前
Fischl完成签到 ,获得积分10
51秒前
52秒前
林洁佳完成签到,获得积分10
55秒前
JamesPei应助devilito采纳,获得10
56秒前
幽默山兰发布了新的文献求助10
57秒前
文G完成签到,获得积分20
57秒前
乐乐应助JxJ采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415